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Abstract

An efficient and accurate iterative scheme for the computation of the mean first passage
times ( MFPTs) of ergodic Markov chains has been presented. Firstly, the computation
problem of MFPTs is transformed into a set of linear equations. It has been proven that
each of these equations is compatible and their minimal norm solutions constitute MFPTs. A
new presentation of the MFPTs is also derived. Using linear least square algorithms, some
numerical examples compared with the finite algorithm of Hunter [6] and iterative algorithm of
J. Xu [7] are given. These results show that the new algorithm is suitable for large sparse systems.
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1 Introduction

There are two kinds of algorithms for computing the mean first passage times(MFPTs) of finite
ergodic Markov chains: finite algorithm and iterative algorithm. Meyer [1] and Hunter [2] propose
finite algorithms for the computation of MFPTs based on generalized inverse matrix and stationary
distribution vector. In 1985, Grassman, Taksar and Heyman [3] proposed the classical GTH
algorithm and EGTH algorithm to find stationary distribution vectors. In 2016, Hunter [4, 5] gave
rank-one update algorithm and perturbation method. Recent reviews of these finite algorithms are
presented in Hunter [6].

In 2015, J. Xu [7] constructed an iterative method with parameters for the computing of MFPTs.
Compared with the classical finite algorithm, the iterative method not only guarantees the accuracy
of computation, but also greatly improves the scale and stability. At the same time, J. Xu also
pointed out that the determination of iterative parameter « is a difficult problem. The parameter
a is decided by the transition matrix and experimental calculation. In this paper, based on
the definition equation of the mean first passage times matrix, the computation of MFPTs is
transformed into a set of linear equations to be solved. These equations are all compatible, but the
coefficient matrix may be singular. It is proved that the minimum norm solution of these equations
form the mean first passage times matrix. Then, the least norm solution of these equations is solved
uniformly by the linear least square algorithm (LS). As far as the author knows, this is the first
time for computing the MFPTs by LS algorithm. Numerical experiments show that this scheme is
effective.

This article is organized as follows. In Section 2 the definition equation of the matrix of the mean
first passage times of a n state Markov chain and the related knowledge of the generalized inverse of
the matrix are introduction without proofs. In Section 3 a set of linear equations are constructed,
and the equivalence of this set of equations to the original matrix equation satisfied by MFPTs is
proved. Last section, a number of numerical examples are given. The LS algorithm is compared
with Hunter’s finite algorithm and Xu’s iteration method in which the results show that the linear
least squares algorithm is effective in computing the mean first passage times of Large-scale Markov
chain.

2 Preliminaries

We set the scene by reintroducing the notation and theory that are stated in Hunter[6]. Let
{Xn,n > 0} be a finite Markov chain with state space S = {1,2,---,m} and transition matrix
P = (pij), where p;; = P{X,, = j|Xn—1 =i} for all i, € S. In this article, we focus on regular
Markov chain (MC). The first passage time T;; is the length of time to go from a state ¢ to a state
j for the first time and we define m;; = E[T;;| X0 = i] as the mean first passage times from state
i to state j. The mean first passage matrix, denoted by M = (m,;) , is the matrix with entries

Theorem 2.1. Let P be a transition matrix of a homogeneous n state Markov chain. X, be the
diagonal matrix formed from the diagonal elements of matrix X. J = [1](i.e. each element of J is
1). The matrix M of mean first passage times is unique solution of the matrix equation[7, 8]

(I-P)X =J - PX,. (2.1)

Definition 2.2. [9] Let A € C™*™. The Moore-Penrose generalized inverse of A denoted by A™ is
the unique solution of four matrix equations: AXA = A, XAX = X, (AX) = AX,(XA) = XA,
where prime ' stands for the conjugate transpose of a matrix.

If A€ C™™ and A is nonsingular, then AT = A~%,
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3 Construction of a Set of Equivalent Linear Equations
J. Xu[7] gives an equations with parameters o for MFPTs
(I*O[P)Xk_H :J+(17(1)PX)@-7PXdk, (31)

which « satisfies 0 < a < 1. Then, Xu constructed an iterative algorithm with parameters « for
computing MFPTs and proved the convergence of this algorithm[7, Thm 3.2].
(AlgXu)Suppose that(l — aP)admits an LU factorization.

Choose an initial approximation X® e R™ ™ tolerance € > 0, and a matrix Frobenius norm -1l
starting with k = 1.

(1) Compute yk-1 — g4 1- oz)PX(kfl) — PXék_l);

(2) Solve LY (*=1/2) — y(k=1),

(3) Solve UX™®) = Y%;

(4) If | X® — X*=D|| < ¢, then return M ~ X® and stop; otherwise increase k by 1 and continue
with step (1).

Compared with the classical finite algorithm Hunter[6] , the algorithm AlgXu is of higher accuracy
and better stability. But it is still a difficult problem that choice of the best iteration parameter
a. In addition, the algorithm AlgXu has to solve two trigangular equations in every iteration step
by step, and the iterative format (3.1) is not a standard iteration form, so it is difficult to analyze
convergence.

Now we construct a set of equivalent linear equations to (2.1).

Let e denote the column vector of n ones and X = (z1, %2, - ,Z,). Then the matrix equation (2.1)
is equivalent to the following n linear equations

r; = Pxrig + e, 1=1,2,---,m, (3'2)

where z;qa = (Ti1, -, Tii—1,0, Tsi41, - - 7:cm)T. Let P; be the matrix formed by replacing each
element of column 7 of matrix P with 0 and A; = (I — P;). Then (3.2) is equivalent to

Az =e, 1=1,2,---,n. (3.3)

The matrix A = I — P is singular, but A; = I — P, may be singular or nonsingular. However, it
is always compatible for every i to equations (3.3). Therefore, whether A; is singular or not, its
minimal norm solution is always A e.

The relation between the unique solution of (2.1) and the minimal norm solution of series equations
(3.3) is given below.

Theorem 3.1. Suppose the unique solution of matrix equation (2.1) is X = (z1, 2, - ,Zn), then
;= Afe,i=1,2,--- n.

Proof: First, notice that for any matrix Q, QQ™ is a projection on R(Q) along N(Q’). If z € R(Q),
then QQ Tz =z or (I — QQ")x = 0.

Next, let P/ = P — P;, P = (p1,p2,- -+ ,Pn), i = (Ti1,Ti2, -+ ,Tin) ", the minimal norm solution of
of equations (3.3) is #; = A}e. Thus
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Therefore, if X = (21,22, ,Zn), then (/ — P)X = AX =J - PX,. O

In summary, the computation problem of MFPTs can be reduced to solving the minimal norm
solution of a set of equations. As is known to all, there are many effective algorithms for solving
the minimal norm solutions of systems with full rank or deficient rank. Now, we use the linear least
squares algorithm (LS for short) based on QR decomposition to compute A?‘e. The implementation
details of the LS algorithm see [10, Chapter 5], which is no longer given here.

4 Numerical Experiment and Analysis

Two kinds of numerical experiments are done in this section. Finite algorithm and iterative method
are chosen to compare with LS algorithm. Two finite algorithm are selected from the Hunter[6], the
algorithm Proc2(HP2) and Proc4(HP4), which have better computational efficiency for different
dimensional problems, and the computing of the inverse of matrix A in HP2 and HP4 is directly
called the inv function command in program language. The iterative algorithm is selected from the
J.Xu[7] algorithm.

The three test index is selected from Hunter[6]:
1. Computational time. A comparison of results running on the same machine is given.
2. Percentage of Zero errors(PZE). Let M = {m;;} be the mean first passage times, ;; =
mi; — >, pikmi; — 1. PZE be the percentage of error terms e;; that are zero.
kg

3. Overall Residual errors(ORE). ORE= >~ > |eij].

i=1j=1

First, we compare three indicators above with 4 examples from different literatures, [6, 7, 11]. In
this part, each algorithm runs 20 times and then takes the average value. Secondly, we compare
the advantages and disadvantages of finite algorithm and iterative algorithm with two large scale
examples.

Example 1. In this case, we choose 4 test matrices Pito P4[6, 7, 11] for comparison.

0.136267 0.292549 0.266992 0.220856 0.083335
0.198798 0.019347 0.129998 0.321252 0.330605
P, = | 0.246269 0.215116 0.044021 0.249831 0.244763
0.400950 0.149352 0.012546 0.303336 0.133815
0.200328 0.084084 0.351278 0.337325 0.026985

0.268031 0.255740 0.201497 0.265012 0.007385 0.002335
0.166582 0.137728 0.032748 0.118446 0.187835 0.356660
0.093279 0.226108 0.081331 0.206803 0.094199 0.298281
0.103853 0.230590 0.261709 0.069110 0.061473 0.273265
0.101657 0.261742 0.128131 0.002138 0.204864 0.301467
0.216100 0.210158 0.154059 0.178624 0.213131 0.027928

P

0.000000 0.701299 0.298701 0.000000 0.000000
0.000000 0.000000 0.437907 0.562093 0.000000
P; = | 0.000000 0.000000 0.000000 0.632082 0.367918
0.471475 0.000000 0.000000 0.000000 0.528525
0.461323 0.538677 0.000000 0.000000 0.000000

0.999999 le—7 2e—7 3e—T7 4e -7

0.4 0.3 0 0 0.3
Py = 5e — 7 0 0.999999 0 5e — 7
5e — 7 0 0 0.999999 5e -7

2e =7 3e—-7 le—-7 4e —7  0.999999
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The results of the 4 examples above are shown in comparison Tables 1, 2 and 3. In the first two
examples, the PZE index of the LS algorithm is the best, followed by the two finite algorithm. In
the last two examples, the PZE index of HP2 algorithm is the best, followed by LS and HP4A. Xu
algorithm is not ideal.

Table 1. Average of computation times (seconds)

Py Py P3 Py
HP2  1.0312e-04  .6912e-04  3.3034e-04  3.5310e-04
XU 0.0045 0.0068 0.0034 0.1450
LS 0.0051 0.0060 0.0046 0.0069

Table 2. Percentage of Zero Error

Py P Ps Py
HP2 0.2000 0.2222 0.6400 0.6000
XU 0.2900 0.1667 0 —

LS 0.4200  0.4722  0.5600  0.5300

Table 3. Overall Residual Error

Pl PQ P3 P4

HP2 4.9652e-05 1.0995e-04 7.1054e-15 7.5147e-09
XU 1.1976e-09 2.1252e-09 1.3786e-09 -
LS 1.3323e-14 2.2204e-14 7.1054e-15 7.6613e-09

Example 2.

Test matrix in this example is sparse irreducible transition matrix generated randomly [6]. The
scale of the test matrix is from the 10 to the 510. The Xu algorithm does not work well, so it is
no longer considered here. Only HP2, HP4A algorithm and linear least square algorithm with QR
decomposition (LSQR) are compared.

The generation code for the test matrix P is as follows Hunter [6] :
Input n;
a=0.4;
P=rand(n);
P(P>a)=0
P=P-diag(
c=1./sum(
for i=1:n

P(i,:)=P(i,:)*c(i);

end

diag(P))
P’);

In addition, the generated matrix has been checked for irreducibility.
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Example 3.

Test matrix in this example is one dimensional random walk transition matrix[11]. The scale of the
test matrix is from the 100 to the 2000. The efficiencies of HP4A algorithm and Xu algorithm are
not good, so only HP2 and LSQR are compared.

Test matrix[11]
r0.75 0.25 0 0 7

0.25 0.50 0.25
0 025 050 0.25

Ps =
0 0 i i i 0
0.25 0.50 0.25
L O 0 025 0.75 |
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Fig. 1. Computation times for LS, HP2 and HP4A (random generating matrix)
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Fig. 2. PZE for LSQR, HP2 and HP4A (random generating matrix)
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From the results presented in Figs. 3, 4 and 5, it is obvious that with the increase of matrix order,
the computation time of LS algorithm increases greatly, while that of HP2 algorithm is relatively
small. The index ORE of the LS algorithm is the magnitude of le — 4 and the HP2 algorithm
magnitude is le — 1. For the important index, PZE, LS is stable around 0.8, and HP2 decreases
from 0.23 to 0.05. It can be seen that LS algorithm can maintain high precision convergence in
addition to long computation time.

5 Conclusions

The above examples show the effectiveness of the LS algorithm. But the computation time of LS
algorithm is relatively long with finite algorithm HP2. It is noteworthy that m independent linear
equations are solved every time, so this kind of algorithm is very easy to implement in parallel.
This may effectively reduce the computation time.

In addition, people may be able to directly computation the generalized inverse matrix A; by parallel
algorithm, so as to improve the computational efficiency.
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