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Abstract

The interplanetary magnetic field carried out from the Sun by the solar wind displays fluctuations over a wide range
of scales. While at large scales, say at frequencies lower than 0.1–1 Hz, fluctuations display the universal character
of fully developed turbulence with a well-defined Kolmogorov-like inertial range, the physical and dynamical
properties of the small-scale regime as well as their connection with the large-scale ones are still a debated topic. In
this work we investigate the near-Sun magnetic field fluctuations at subproton scales by analyzing the Markov
property of fluctuations and recovering basic information about the nature of the energy transfer across different
scales. By evaluating the Kramers–Moyal coefficients we find that fluctuations in the subproton range are well
described as a Markovian process with Probability Density Functions (PDFs) modeled via a Fokker–Planck (FP)
equation. Furthermore, we show that the shape of the PDFs is globally scale-invariant and similar to the one
recovered for the stationary solution of the FP equation at different scales. The relevance of our results on the
Markovian character of subproton scale fluctuations is also discussed in connection with the occurrence of
turbulence in this domain.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Magnetohydrody-
namics (1964); Heliosphere (711); Interplanetary physics (827); Space plasmas (1544)

1. Introduction

The recently launched Parker Solar Probe (PSP) mission
(Fox et al. 2016) has increased the interest in investigating the
evolution of solar wind properties through the inner helio-
sphere. Several studies have been performed to investigate the
near-Sun or pristine solar wind properties (Bale et al. 2019) and
to characterize the radial evolution of magnetic field fluctua-
tions at different heliocentric distances in terms of high-order
statistics of increments (Alberti et al. 2020), spectral features
(Chen et al. 2020), the entropic character of magnetic field
fluctuations (Stumpo et al. 2021), and the emergence of large-
scale rapid polarity reversals known as switchbacks (de Wit
et al. 2020). PSP measurements allow not only to investigate
the solar wind features at different heliocentric distances, but
also to characterize the dynamics of its fluctuations over a wide
range of scales, from the large scales up to the subproton
regime. The inertial range properties, i.e., the behavior of
magnetic field fluctuations between the integral scale L and the
ion inertial length scale di, seem to be consistent with
expectations from the magnetohydrodynamic turbulence pic-
ture of describing the solar wind fluctuations in a fluid-like
approximation, whereas the behavior of fluctuations in the
subproton regime, i.e., at scales smaller than di, still remains
unclear and highly debated (Chhiber et al. 2021).

The characterization of physical processes operating across the
inertial range and responsible for transferring energy toward
smaller scales has been broadly investigated in terms of stochastic
processes. This is a long-standing idea since pioneering works by
Ruelle & Takens (1971) and Mandelbrot (1978). In the

framework of hydrodynamic turbulence it has been shown that
the statistics of longitudinal velocity increments can be described
in terms of the Markov process in scale (Pedrizzetti &
Novikov 1994; Friedrich & Peinke 1997; Davoudi & Tabar 1999;
Renner et al. 2001a). Indeed, the main idea behind these works is
to represent the statistics of the longitudinal velocity increments as
a stochastic process evolving across the length or timescales,
instead of the common evolution in space or in time. A similar
approach aiming to study the Markovian properties of the solar
wind magnetic field fluctuations in the inertial range has been
used by Strumik & Macek (2008a, 2008b) in the framework of
space plasma turbulence. They showed that the turbulent cascade
in the solar wind satisfies the Markov condition, suggesting
the presence of a local energy transfer mechanism between
subsequent scales which therefore does not depend on large-scale
structures or the driving mechanisms of solar wind turbulence.
However, this kind of study for the subproton regime is still
missing. One of the striking features of this regime is the existence
of a scale-invariant nature suggesting a filamentary structure of the
dissipation field (Alberti et al. 2021). It has been also interpreted
as the existence of a scale-invariant topology of current sheets
between ion and electron inertial scales (Chhiber et al. 2021),
leading the system toward a restored symmetry of the statistics of
fluctuations (Dubrulle 2019). Nevertheless, there is no general
consensus on the physical mechanisms explaining these small-
scale features, which are generally highlighted through spacecraft
measurements and are not observed through numerical simula-
tions (Papini et al. 2019, 2021).
The properties of the magnetic field fluctuation statistics,

expressed in terms of the scaling of power spectrum and
structure functions, display a universal character in the inertial
range of plasma turbulence. Conversely, in the subproton range
a deep understanding of these statistical properties is still
missing. In this paper we investigate the Markovian character
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of the magnetic field fluctuations at subproton scales by using
high-resolution measurements gathered by PSP in the near-Sun
solar wind for the first time. We provide a parameterization of
the Kramers–Moyal (KM) coefficients associated with the
magnetic field fluctuations as a function of the timescale. We
show that the timescale evolution of the probability density
functions (PDFs) is governed by the Fokker–Planck (FP)
equation. As already shown in previous works, the shape of the
experimental PDFs exhibits a global scale invariance. In this
work we show that these pdfs can be successfully approxi-
mated by considering the stationary solution of the corresp-
onding FP equation, contrary to what is generally observed in
the inertial range of fully developed turbulence.

2. Data Description and Methods

2.1. Data

We investigate the statistics of the magnetic field increments
at subproton scales in the pristine solar wind by using
measurements gathered by the FIELDS suite on board PSP (Bale
et al. 2016). Specifically, we focus on a 28 minute interval on
2018 November 6 from 02:20:00 UT to 02:48:00 UT, when PSP
was located at about 0.17 au from the Sun. We use data from the
SCaM data product in the spacecraft reference frame, which
merges measurements from the fluxgate (FGM) and the search-
coil (SCM) magnetometers, enabling observations from DC up
to 1 MHz with an optimal signal-to-noise ratio (Bowen
et al. 2020). Here, we consider data with a sampling of
293 samples s−1, corresponding to ∼0.0034 s time resolution.

Since the spacecraft reference frame has no particular
significance for our results, we rotate the magnetic field
components in the minimum variance reference system, where
B1, B2, and B3 are the minimum, intermediate, and maximum
variance components, respectively. The minimum variance
component mainly resides along the radial direction while
intermediate and maximum variance components are repre-
sentative of fluctuations along the transverse directions with
respect to the mean field.

Figure 1 shows the time series of the magnetic field
components (left panel) along with the corresponding Power
Spectral Densities (PSDs, right panel). As usually observed the
PSDs show two different spectral behaviors f−β: at low
frequencies (i.e., f 1 Hz) β ä [3/2, 5/3] (in agreement with

recent findings, Chen et al. 2020; Alberti et al. 2021; Chhiber
et al. 2021), while in the subproton domain (i.e., f 10 Hz)
β ä [7/3, 8/3] (Chhiber et al. 2021). Moreover, a transition
region is also observed between the two different dynamical
regimes, with exponents showing a transition from inertial to
subproton range behavior.

2.2. Methods

A fundamental quantity in the analysis of solar wind
turbulence is represented by the magnetic field increment
(fluctuation) across a time separation scale τ, defined as

b B t B t i, 1, 2, 3. 1i i i, ( ) ( ) ( )t+ - =t 

These increments represent a stochastic process in τ, thus it is
relevant to investigate their Markovian character. Given a
stochastic process x(t, τ), the main quantity in defining a
Markov process is the transition probability, i.e., the probability
of observing the state x1 at the scale τ1 given the states x2 at the
scale τ2 until xn at the scale τn, with τ1< τ2< ...< τn. The
process is Markovian if the n-point transition probability
satisfies the condition

p x x x p x x, , ; ... ; , , , , 2n n1 1 2 2 1 1 2 2( ∣ ) ( ∣ ) ( )t t t t t=

and then the knowledge of the initial distribution p(xn, τn) and
the two-points transition probabilities allows a complete
knowledge of n-point probability distribution.
An important relation arising from the Markov condition is

the Chapman–Kolmogorov (CK) equation expressing the
transition probability of observing x1 at the scale τ1 given x3
at the scale τ3 by integrating on a variable x2 at an arbitrary
intermediate scale τ1< τ2< τ3 (Risken 1996, p. 28; Renner
et al. 2001a), i.e.,

p x x p x x p x x dx, , , , , , . 31 1 3 3 1 1 2 2 2 2 3 3 2( ∣ ) ( ∣ ) ( ∣ ) ( )òt t t t t t=
-¥

+¥

The differential form of the CK equation is called the master
equation and reads as

p x x x p x x, , , , , . 4KM( ∣ ) ( ) ( ∣ ) ( )
t

t t t t t-
¶
¶

¢ ¢ = ¢ ¢

Figure 1. Left panel: the time series of the minimum (B1), intermediate (B2), and maximum (B3) variance components of the magnetic field. Right panel: the
corresponding PSDs. Dashed lines refer to power-law trends characterized by spectral slopes −3/2 at low frequencies and −8/3 at high frequencies, respectively.
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Equation (4) expresses the time evolution of the transition
probability in terms of the KM expansion and the minus sign
on the left-hand side of Equation (4) is due to the direction of
the time evolution toward smaller scales (Renner et al. 2001a).
Here, the operator  xKM( ) is the KM operator,

 x
x

D x, , , 5KM
k

k
k

1

( ) ( ) ( )( )⎛
⎝

⎞
⎠

åt t= -
¶
¶=

¥

where the functions D x,k ( )( ) t are the KM coefficients.
For a generic stochastic Markov process, all the terms in the

KM expansion are different from zero. However, according to
the Pawulaʼs theorem, if the fourth-order coefficient D x,4 ( )( ) t
is equal to zero, all the coefficients of order k� 3 vanish and
the KM expansion stops at the second order. In that case, the
KM expansion reduces to the FP equation (Risken 1996)
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The first-order KM coefficient D x,1 ( )( ) t represents the drift
function, accounting for the deterministic evolution of the
stochastic process x, whereas the second-order KM coefficient
D x,2 ( )( ) t constitutes the diffusion term, which modulates the
amplitude of the delta-correlated Gaussian noise, Γ(τ), of the
corresponding Langevin equation

x
D x D x, , . 71 2( ) ( ) ( ) ( )( ) ( )

t
t t t-

¶
¶

= + G

From a practical point of view, the KM coefficients are not
directly accessible from data, but rather they can be evaluated
by using the conditional moments. According to Renner et al.
(2001a, 2001b), the k th-order conditional moment is defined as

M x x x p x x dx, ’ ’, , ’. 8k k( ) ( ) ( ∣ ) ( )( ) òt t t t= - - DtD
-¥

+¥

The corresponding k th-order KM coefficient is defined by
taking the limit

D x
k

M x,
1

lim
1

, . 9k k
0( )

!
( ) ( )( ) ( )t

t
t=

D
t tD  D

Whereas conditional moments defined in (8) can be computed
from the experimental observations, the definition (9) cannot be
applied exactly. In fact, the best estimate of the k th-order KM
coefficient considered in the analysis is given by

D x
k

M x,
1

, , 10k

s

k
s s

( )
!

( ) ( )( ) ( )t
t

t=t t

where τs indicates the time resolution of the time series.
Here, we applied the above analysis to the small-scale

increments of the magnetic field at the subproton scales,
starting from the verification of the CK Equation (3), and
successively evaluating the KM coefficients up to the fourth
order.

3. Results

The first step of our analysis consists in searching for the
Markovian nature of the statistics of increments bi,τ. Although

the analysis is performed in the temporal domain, it is possible
to assume that we are exploring spatial scales via Taylorʼs
hypothesis, i.e., r= τVSW where VSW is the solar wind velocity.
This hypothesis has been shown to be valid in the selected time
interval being solar wind supersonic and super-Alfvénic (e.g.,
Chhiber et al. 2021; Perez et al. 2021). In the following we
show the results for the minimum, intermediate, and maximum
variance directions. One way to test the Markov condition on
the statistics of increments is to prove that Equation (3) is
satisfied for the stochastic process defined by the increments
bi,τ at different timescales. In the following, we set the small
timescale τ1= 0.01 s and we show results for three different
values of the timescale separation Δτ= 0.0034, 0.01, and
0.5 s. The intermediate timescale is then evaluated as
τ2= τ1+Δτ, while the large timescale as τ3= τ1+ 2Δτ.
The statistics of increments at these scales allow us to evaluate
and compare both members of Equation (3). We refer to the
left-hand side of Equation (3) as the empirical conditional
probability, pE, and to the right-hand side as the CK conditional
probability pCK. The results of the CK test are shown in
Figure 2. Figures 2(a), 2(d), and 2(g) display a good agreement
between pE (red lines) and pCK (blue lines) for Δτ= 0.0034 s,
suggesting that the process is Markovian at this scale. By
increasing the separation to Δτ= 0.01 s the Markov condition
is still fulfilled in the whole subproton range, Figures 2(b), 2(e),
and 2(h). However, by increasing the separation to Δτ= 0.5 s,
such to fall at the end of the inertial regime, the CK equation
appears still valid, although neither pE nor pCK depends on the
large scale increments bi, 3t , Figures 2(c), 2(f), and 2(i).
Summarizing, for the considered data sample the scale-to-scale
process defined by bi,τ is in general markovian across the whole
subproton domain and the fluctuation amplitudes in the
subproton domain seem to be statistically independent from
those observed in the inertial range, i.e., p b b, ,i i, 1 , 31 3( ∣ )t t =t t
p b ,i, 11( )tt . We emphasize that the same results have been
obtained for all the values of τ1 within the subproton range (not
shown).
Previous studies showed that the Pawula theorem holds across

the inertial range of turbulence. This implies that the evolution of
the PDFs of field increments in the inertial domain is governed by
Equation (6). This result has been accurately validated in the case
of hydrodynamic and solar wind turbulence (see Renner et al.
2001a; Strumik & Macek 2008b; Peinke et al. 2019, and
references therein), while there is no evidence yet at subproton
scales. Thus, we first assess its validity by computing the finite-
timescale KM coefficients of the process bi,τ at the sampling time
τs, Equation (10). Figure 3 shows that the fourth-order KM
coefficient is close to zero for both components suggesting that the
Pawula theorem is also valid in the subproton domain. Hence, the
evolution of the PDFs of magnetic field increments is governed by
the FP equation. Furthermore, it is evident that the first-order
coefficient is a linear function of bi,τ, whereas the second-order
coefficient shows a quadratic trend. Thus, we can introduce the
following parameterization for D 1

s

( )
t and D 2

s

( )
t as

D b b, , 11i i i
1
s

( ) ( ) ( )( ) t g t= -t

D b b, , 12i i i i
2 2
s

( ) ( ) ( ) ( )( ) t a t b t= +t

such that we can study the dependence of the parameters γi(τ),
αi(τ), and βi(τ) upon the timescale τ. All parameters exhibit a
power-law dependence on the timescale τ, i.e.,

A, , , 13i i i 0{ ( ) ( ) ( )} ( )a t b t g t t= m
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and the values of A0 and μ are listed in Table 1 for the three
magnetic field components.

As a further step, we perform a consistency check by
computing the evolution of the PDFs of the magnetic field
increments from large toward small scales in the subproton
domain. We start from p bi, 0( )t at τ0= 0.051 s as an initial
condition, and then we compute the numerical solution of the
FP equation by assuming a Gaussian short-time propagator
(Renner et al. 2001b). Figures 4(a), 4(b), and 4(c) show the
comparison between the empirical PDFs and the corresponding
FP numerical solutions. The excellent agreement between the
empirical PDFs and the theoretical predictions proves that the
FP equation with the KM coefficients (11) and (12) accurately
describes the evolution of PDFs in the subproton domain.

Furthermore, by rescaling the PDFs at the different scales
according to the following transformations, (e.g., see

Figures 4(d), 4(e), and 4(f), circles),

b x
b

, 14ii
i

b
,

,

i,

⟶ ( )
s

ºt
t

t

p b p x p b 15ii b i, ,i,( ) ⟶ ( ) ( ) ( )sºt tt

where bi,s t is the standard deviation of bi,τ, we obtained a PDF
collapsing in the subproton range (Kiyani et al. 2009; Osman
et al. 2015; Chhiber et al. 2021). The PDF collapsing defines a
master curve for the shape of the PDFs. Thus, we attempt a
comparison between the experimental PDFs of the rescaled
increments and the corresponding stationary solutions of the FP
equation. We evaluate the stationary distribution pST(xi) by
solving the timescale independent FP equation (Risken 1996),

Figure 2. Comparison between observed (red curves) and reconstructed (blue curves) conditional probabilities at different timescales for minimum (upper panels),
intermediate (middle panels), and maximum (lower panels) variance directions. The timescale differences 2 Δτ = τ3 − τ1 for the CK test are 0.0068 s (panels a, d, and
g), 0.02 s (panels b, e, and h), and 1.0 s (panels c, f, and i).
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i.e.,

x
D x p x

D x

D x
D x p x . 16
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2
ST
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2
2

ST[ ( ) ( )] ( )
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( )¶

¶
=

By introducing the set of KM coefficients D x xi i i
1 ( )( ) g= - and

D x xi i i i
2 2( )( ) a b= + in (16), where αi, βi, and γi are now

constants, the stationary solution reads

p x N x , 17i i i iST 0
2 2

1i

i( ) ( ) ( )a b= +
g
b

- -

where N0 is the normalization factor. We may note how
the obtained function is a Kappa distribution (Milovanov &
Zelenyi 2000; Leubner & Vörös 2005), which can be written
also in the standard form,

p x N
x

x
1

1
, 18i

i
ST 0

2

0
2

( ) ( )⎡
⎣⎢

⎤
⎦⎥k

= ¢ +
k-

where κ= 1+ γi/2βi, x 2 2i i i0
2 ( )a g b= + and N 0¢ =

N i0a k- .
Whereas the inertial range is characterized by strongly

intermittent magnetic field fluctuations reflecting in a well-
known modification of the PDF shape moving from the scale of
the forcing toward the dissipation scale, the subproton range
statistics exhibit a global scale invariance that manifests in the

existence of a shape-invariant master curve. The comparison
between the empirical PDFs of the normalized variables xi and
the stationary PDFs are reported in Figures 4(d), 4(e), and 4(f).
The values of the parameters of Equation (18) obtained by
fitting the distributions are N 0.580 ¢ = , x0= 0.75, and κ= 2.0
for x1, N 0.540 ¢ = , x0= 0.83, and κ= 2.1 for x2, and
N 0.530 ¢ = , x0= 0.85, and κ= 2.1 for x3. We stress that in
this framework the FP equation describes the evolution of
PDFs across timescales instead of time, and thus the concept of
stationarity has to be intended as invariance of the rescaled
magnetic field increment PDFs for any timescale in the
subproton range. The agreement between the observed PDFs
and Equation (18) is remarkably good. However, we point out
that this stationary distribution has to be considered as a valid
approximation of the core of the empirical PDFs in a restricted
range of variability of xi (e.g., within ±5σ as shown in the
bottom panel of Figure 4). Indeed, in this figure it is evident
that the tails of the distributions display a slight departure from
the stationary solution, especially for x2 and x3, and for
increasing values of xi the tails of the empirical PDFs decrease
more rapidly than the tails of the Kappa distribution.

4. Discussion and Conclusions

In this work we have investigated the Markovian character of
the magnetic field increments (fluctuations) at subproton scales

Figure 3. First, second, and fourth-order finite-size KM coefficients for b1,τ (left), b2,τ (center), and b3,τ (right) at scale τ = 0.01 s. Solid lines represent the D bi
1,2

,s
( )( )

t t

best fit and D b 0i
4

,s
( )( ) =t t .

Table 1
Fitted Coefficients A0 and μ of Equation (13)

b1,τ b2,τ b3,τ

A0 μ A0 μ A0 μ

α 0.7 ± 0.2 0.36 ± 0.08 1.6 ± 0.3 0.47 ± 0.06 5.3 ± 1.7 0.61 ± 0.08
β 0.003 ± 0.001 −1.87 ± 0.01 0.002 ± 0.001 −1.96 ± 0.01 0.002 ± 0.001 −1.98 ± 0.01
γ 0.87 ± 0.03 −1.01 ± 0.01 0.90 ± 0.02 −1.01 ± 0.01 0.89 ± 0.02 −1.02 ± 0.01
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in turbulent near-Sun solar wind. The results clearly evidenced
that at these scale, as already observed in the inertial range
(Strumik & Macek 2008a, 2008b), the statistics of the magnetic
field fluctuations are Markovian and the dynamics along the
different scales can be described in terms of a FP equation. Since
universality based on some turbulent-like approach to fluctua-
tions is lost at small scales, different approaches based on some
basic concepts of nonequilibrium statistical mechanics, such as
the one presented here, could successfully reveal some universal
characteristics of the underlying processes which generate
fluctuations at these scales (Carbone et al. 2022).

On the physical side, we obtain that the energy transfer has a
local character. Although this feature is also present in the inertial
range of the solar wind, our analysis shows that no statistical
correspondence is found between magnetic field fluctuations
observed in inertial and subproton regimes. The observed
statistical independence does not mean that there is no energy
flux from the inertial domain toward the subproton scales but
suggests that the mechanisms at the origin of the fluctuations
observed in the two regimes are different. Moreover, in various
recent and past works it was found that the scaling of structure
functions of magnetic field increments at subproton scales
suggests the occurrence of global scale invariance, i.e., lack of

intermittency. This is clearly supported by the existence of a scale-
invariant shape of the PDFs of magnetic field increments, whose
shape is well approximated by the stationary solution of the FP
equations. Furthermore, we show that by using the common linear
and quadratic parameterizations for the first and second KM
coefficients, respectively, the scale-invariant distribution coming
from the stationary FP equation is the Kappa distribution (18).
Since κ depends on γi and βi, the KM coefficients can be related
to the supposed nonextensive character of fluctuations. Indeed,
considering Equation (18) and reminding its relation between κ

and the nonextensivity parameter q of Tsallis’ entropy, i.e., κ= 1/
(1− q), from the relation q= γi/(2βi+ γi) we obtain q∼ 0.5 for
the three magnetic field components. These values do not differ
significantly from those measured by Leubner & Vörös (2005) in
the low end of the inertial range of solar wind magnetic field
fluctuations.
As a last point, we would like to discuss the physical

consequences of the observed global scale invariance. As already
mentioned above, the emergence of global scale invariance at
subproton scales means that we do not observe intermittency in
this regime. This can be linked to the fact that the statistics of the
magnetic field increments can be successfully approximated by
the stationary solution of the FP equation with respect to the

Figure 4. Comparison of the empirical PDFs p(bi,τ) obtained from the PSP data at different scales (colored lines) with the numerical solutions (dashed lines), panels
(a), (b), and (c). All the curves are shifted in the vertical direction for clarity of presentation and correspond to the following timescales, from top to bottom: 0.051,
0.044, 0.031, 0.017, and 0.0068 s. Panels (d), (e), and (f) show the data collapsing of empirical PDFs, circles, along with the best fit of the stationary solution (18),
solid lines.
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timescale variable τ. This is equivalent to assuming that the
probability flux is constant across the scales, i.e., ∂p/∂τ→ 0 and
p→ pST. From a speculative point of view, the absence of
intermittency could indicate that the scaling properties in this
regime could be more realistically related to the formation of a
self-similar current structure, which is an expected dissipative
structure. In other words, the cascade mechanism in the inertial
range ends with the formation of a topological structure that is a
complex fractal representing, de facto, the dissipative pattern.
Thus, the observed scale invariance could be the counterpart of
the fractal topology of the current structure. Clearly, this is a
speculative point of view, which, however, could represent the
starting point for successive investigation and analysis. An
alternative scenario could be the occurrence of wave turbulence
in the subproton range such that the cascade mechanism may be
better described in terms of an energy transfer flow toward the
electron scales where heating and dissipation might occur.

In conclusion, here we have provided strong evidence for the
Markovian character of the small-scale magnetic field fluctua-
tions at subproton scales along with other strong evidence of
the global scale invariant character of these fluctuations on the
considered data sample. These results represent a possible
indication for finding universal features in the magnetic field
fluctuation statistics at subproton scales in terms of Markov
processes. Further work is necessary in order to unveil similar
statistical properties in different samples of high-frequency
interplanetary magnetic field observations.
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