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Abstract

Krylov subspace methods have been considered to solve singular linear systems Ax = b. One

of these methods is the DGMRES method. DGMRES is an algorithm to solve the Drazin–

inverse solution of the large scale and sparse consistent or inconsistent singular linear systems

with with arbitrary index. In this paper, we present an improved version of this algorithm.

Numerical experiments show that computation time is significantly less than that of computation

time obtained by the DGMRES algorithm.

Keywords: Singular linear systems; DGMRES method; drazin-inverse solution; index; krylov subspace
methods.

1 Introduction

Consider the linear system

Ax = b, (1.1)

where A ∈ CN×N is a singular matrix and ind(A) is arbitrary. Here ind(A), the index of A is the
smallest nonnegative integer a such that rank(Aa+1) = rank(Aa). The Drazin–inverse (see [1] or
[2]), denoted by AD, of A is the unique matrix satisfying

AADA = AD, AAD = ADA, Aa+1AD = Aa,
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where a is the index of A. We recall that the Drazin-inverse solution of (1.1) is the vector
ADb, where AD is the Drazin–inverse of the singular matrix A. Iterative methods for singular
linear systems include stationery iterative methods, semi–iterative methods and Krylove subspase
methods. Stationery iterative methods for singular linear systems have been well studied in [3],
[4], [5], [6], [7], [8] and [9]. Sidi [10], Wei and Wu [11] firstly presented the Krylov subspace
methods for singular linear systems with arbitrary index, works for consistent singular linear
systems are perhaps newly emerged some modified GMRES methods in [12], [13] and [8]. Works
for consistent or inconsistent singular linear systemss with an arbitrary index are presented in [14],
[10], [15] and [16]. The Drazin-inverse has various applications in the theory of finite Markov
chains [2], the study of singular differential and difference equations [2], the investigation of Cesaro-
Neumanniterations (see [17], [18], [19], [20], [21], [22] and [23]), cryptography [24], iterative methods
in numerical analysis [25], multibody system dynamics [26] and others. It is well known that the
representations of the Drazin– inverse of matrices are very important not only in matrix theory,
but also in singular differential and difference equations, probability statistical, numerical analysis,
game theory, econometrics, control theory and so on (see [2] and [1]), and also singular systems
with arbitrary index arise naturally in Markov chain modelling (see [27] and [28]).

The problem of finding the solution of the form ADb for (1.1) is very common in the literature
and many different techniques have been developed in order to solve it. In [29], A. Sidi proposed a
general approach to Krylov subspace methods for computing Drazin-inverse solution. And then, he
gave several Krylov subspace methods of Arnoldi, DGCR and Lancoze types. Moreover in [14] and
[10], Sidi has continued to drive two Krylov subspace methods for computing ADb. One is DGMRES
method, which is implementation of the DGCR method for singular systems which is analogues to
GMRES for non-singular systems. Other is DBI-CG method which is Lanczos type algorithm.
DGMRES, just like, GMRES method, is a stable numerically and economical computationally and
storage wise method. DBI-CG method, also just like BI-CG for non–singular systems, is a fast
algorithm, but when we need a high accuracy, the algorithm is invalid. In the present paper, we
suggests the IMDGMRES algorithm which is another implementation of DGMRES, for solving
the singular linear system (1.1) with arbitrary index. By numerical examples, we show that the
computation time of IMDGMRES algorithm is substantially less than that of DGMRES algorithm.

The paper is organized as follows. In section 2, we will give a review of DGMRES. In section 3,
we will derive the IMDGMRES algorithm. In Section 4 the results of some numerical examples are
given. Section 5 is devoted to concluding remarks.

2 DGMRES Algorithm

DGMRES method is a Krylov subspace method for computing the Drazin–inverse solution of
consistent or inconsistent linear systems (1.1) (see [29] and [10]). In this method, there are not
any restriction on the matrix A. Thus, in general, A is non-hermitian, a := ind(A) is arbitrary, and
the spectrum of A can have any shape. DGMRES starts with an initial vectors x0 and generates a
sequence of vectors x0, x1, . . ., as

xm = x0 +

m−a∑
i=1

ciA
a+i−1r0, r0 = b−Ax0.

Then

rm = b−Axm = b−
m−a∑
i=1

ciA
a+ir0.

The Krylov subspace we will use is

Km−a{A;Aar0} = span{Aar0, A
a+1r0, . . . , A

m−1r0}.
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The vector xm produced by DGMRES satisfies

∥Aarm∥2 = min
x∈x0+Km−a{A;Aar0}

∥Aa(b−Ax)∥2. (2.1)

As xm = x0+
∑m−a

i=1 ciA
a+i−1r0, we starts by orthogonalizing the krylov vectors Aar0, A

a+1r0, . . . , ,
by the Arnoldi–Gram–Schmidt process (see [30] and [31]), carried out numerically like the modified
Gram–Schmidt process:

For i = 1, 2, . . . , do
Compute hji = (vj , Aυi), j = 1, 2, . . . , i.
Compute v̂i = Avi −

∑i
j=1 vjhji.

Let hi+1,i = ∥v̂i∥2 and set vi+1 = v̂i/hi+1,i.

Consequently, we have a set of orthonormal vectors v1, v2, . . . , that satisfies

Avi =

i+1∑
j=1

vjhji, i = 1, 2, . . . , (2.2)

as long as i ≤ q − 1, where q is the degree of the minimal polynomial of A with respect to Aar0,
hence with respect to v1. Furthermore, for each k,

span{v1, v2, . . . , vk} = span{Aar0,A
a+1 r0, . . . ,A

k+a−1 r0}
= Kk(A;Aar0).

(2.3)

If we now define the N × k matrix V̂k by

V̂k = [v1|v2| . . . |vk], k = 1, 2, . . . , (2.4)

then, for m ≤ m0 (for definition of m0 see [29] and [10]), we can write

xm = x0 + V̂m−aξm, for some ξm ∈ Cm−a (2.5)

and we need to determine ξm. Since rm = r0 +AV̂m−aξm, we have

Aarm = Aar0 +Aa+1V̂m−aξm = βv1 −Aa+1V̂m−aξm. (2.6)

Next, provided k ≤ q − 1, from (2.2) we can write

AV̂k = V̂k+1H̄k; H̄k =



h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . hkk

0 · · · · · · 0 hk+1,k


. (2.7)

Note that H̄k ∈ C(k+1)×k and H̄k has full rank when k ≤ q − 1 [10]. Now, by using (2.6), (2.7),
and V̂ ∗

m+1V̂m+1 = I(m+1)×(m+1) we can reduce the n× (m−a) least squares problem of (2.1) to the
(m+ 1)× (m− a) least squares problem

∥Aarm∥2 = ∥V̂m+1(βe1− Ĥmξm)∥2 = min
ξ∈Cm−a

∥V̂m+1(βe1− Ĥmξ)∥2 = min
ξ∈Cm−a

∥βe1− Ĥmξ∥2, (2.8)

where
Ĥm = H̄mH̄m−1 . . . H̄m−a, (2.9)

and Ĥm ∈ C(m+1)×(m−a). Note that n is normally very large and m ≪ n, which implies that the
problem in (2.8) is very small. The minimization problem (2.8) is accomplished by using the QR
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decomposition of Ĥm. For more details we refer the reader to [29] and [10]. We now summarize the
steps of DGMRES for the solution of a linear system Ax = b, where A is singular and a = ind(A)
is known.

Algorithm 1 DGMRES algorithm

1. Pick x0 and compute r0 = b−Ax0 and Aar0.
2. Compute β = ∥Aar0∥ and set v1 = β−1(Aar0).
3. Orthogonalize the Krylov vectors Aar0, A

a+1r0, . . . , via the Arnoldi-Gram-
Schmidt process
carried out like the modified Gram-Schmidt process:
For i = 1, 2, . . . , do
Compute hji = (vj , Avi), j = 1, 2, . . . , i.
Compute v̂i = Avi −

∑i
j=1 vjhji.

Let hi+1,i = ∥v̂i∥ and set vi+1 = v̂i/hi+1,i.
(The vectors v1, v2, . . . , obtained by this way form an orthonormal set.)

4. For k = 1, 2, . . . , form the matrices V̂k ∈ CN×k and H̄k ∈ C(k+1)×k

as defined in (2.4) and (2.7), respectively.
5. For m = a+ 1, ..., form the matrix Ĥm = H̄mH̄m−1 . . . H̄m−a.
6. Compute the QR factorization of Ĥm : Ĥm = QmRm;Qm ∈ C(m+1)×(m−a) and

Rm ∈ C(m−a)×(m−a).
(Rm is upper triangular.)

7. Solve the (upper triangular) system Rmξm = β(Q∗
me1), where e1 = [1, 0, . . . , 0].

8. Compute xm = x0 + V̂m−aξm (then ∥Aarm∥ = β
√
1− ∥Q∗

me1∥2).

3 IMDGMRES Method

In this section, we suggest a simple modification of the DGMRES algorithm for solving the Drazin–
inverse solution of linear systems (1.1). In this method, there are not any restriction on the matrix
A. Thus, in general, A is non-hermitian, a := ind(A) is arbitrary, and the spectrum of A can have
any shape.

From (2.8) we have
∥Aarm∥2 = min

ξ∈Rm−a
∥βe1 − Ĥmξ∥2, (3.1)

where Ĥm = H̄mH̄m−1 . . . H̄m−a. For solving the least squares problems, suppose that the matrix
Qm ∈ R(m+1)×(m+1) is a multiplication of the Givens to annihilate the strictly lower part of H̄m ∈
R(m+1)×m and ḡm+1 = βe1 = [β 0 . . . 0]T . From (2.1) we can obtains

∥Aarm∥22 = ∥ḡm+1 − H̄mH̄m−1 . . . H̄m−aξm−a∥22
= ∥Qm(ḡm+1)−Qm(H̄m)H̄m−1 . . . H̄m−aξm−a∥22

=

∥∥∥∥( gm
γm+1

)
−

(
Rm

0

)
H̄m−1 . . . H̄m−aξm−a

∥∥∥∥2

2

= ∥gm −RmH̄m−1H̄m−2 . . . H̄m−aξm−a∥22+ | γm+1 |2 .

Since Rm ∈ Rm×m is an upper triangular matrix and H̄m−1 ∈ Rm×m−1 is upper Hessenberg matrix,
consequently RmH̄m−1 ∈ Rm×m−1 is a upper Hessenberg matrix. Suppose that H∗

m−1 = RmH̄m−1.
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Also, let Qm−1 ∈ Rm×m which is obtained by multiplying Givens rotations. As a result Qm−1H
∗

is an upper triangular matrix. So we have

∥Aarm∥22 = ∥gm −H∗
m−1H̄m−2 . . . H̄m−aξm−a∥22+ | γm+1 |2

= ∥Qm−1gm − (Qm−1H
∗
m−1)H̄m−2 . . . H̄m−aξm−a∥22+ | γm+1 |2 .

=

∥∥∥∥( gm−1

γm

)
−

(
Rm−1

0

)
H̄m−2 . . . H̄m−aξm−a

∥∥∥∥2

2

+ | γm+1 |2

= ∥gm−1 −H∗
m−2H̄m−3 . . . H̄m−aξm−a∥22+ | γm |2 + | γm+1 |2 .

After a+ 1 repeating this process we have

∥Aarm∥22 = ∥gm−a −Rm−aξm−a∥22+ | γm−a+1 |2 + . . .+ | γm |2 + | γm+1 |2, (3.2)

where gm−a = [γ1 γ2 . . . γm−a]
T , Rm−a ∈ R(m−a)×(m−a) and also ξm−a ∈ Rm−a. To minimize

(3.2) is sufficient we choose ξm−a = R−1
m−agm−a.

The advantage of this approach is that we do not need to build the matrix Ĥm and also this
method reduces computation time by approximately two times which is a significant advantage of
the method IMDGMRES compared to the method DGMRES. Now, we summarize the steps of
the new method, called IMDGMRES method, for comuting the Drazin–inverse solution of singular
linear systems Ax = b as follows.

Algorithm 2 IMDGMRES algorithm

1. Pick x0 and compute r0 = b−Ax0 and Aar0.
2. Compute β = ∥Aar0∥ and set v1 = β−1(Aar0).
3. Orthogonalize the Krylov vectors Aar0, A

a+1r0, . . . , via the Arnoldi-Gram-
Schmidt process
carried out like the modified Gram-Schmidt process:
For i = 1, 2, . . . , do
Compute hji = (vj , Avi), j = 1, 2, . . . , i.
Compute v̂i = Avi −

∑i
j=1 vjhji.

Let hi+1,i = ∥v̂i∥ and set vi+1 = v̂i/hi+1,i.
(The vectors v1, v2, . . . , obtained by this way form an orthonormal set.)

4. For k = 1, 2, . . . , form the matrices V̂k ∈ CN×k and H̄k ∈ C(k+1)×kas defined in
(2.4)
and (2.7), respectively.

5. Set H∗
m = Hm

6. For k = m,m− 1, · · · ,m− a Do :
7. Compute the QR factorization of H∗

k : H∗
k = QkRk ,

where Qk ∈ R(k+1)×(k+1) and Rk ∈ R(k+1)×k

8. Set H∗
k−1 = RkHk−1 , gk =

{
Qk(βe1), If k = m,
Qkgk+1, Otherwise,

9. EndDo
10. Compute ξm−a, the minimizer of ∥gm−a −Rm−aξ∥2 and xm = x0 + V̂m−aξm−a.
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4 Numerical Examples

To compare the behavior of the proposed IMDGMRES method discussed in the previous section with
the DGMRES method, we present in this section numerical results for two examples. Our examples,
which have a singular coefficient matrix, are derived by the finite difference method for elliptic
partial differential equations. The numerical computations are performed in MATLAB (R2010b)
with double precision. The results were obtains by running the code on an Intel Core 2 (Duo) 8400
Processor running 2.26GHz with 3 GB of RAM memory using Windows Vista professional 32-bit
operating system. The initial vector x0 is the zero vector. All the tests were stopped as soon as

Re =
∥xn −ADb∥∞

∥ADb∥∞
≤ 10−8.

Example 4.1. We will compute the linear system Ax = b by discretizing Poisson equation with
Neumann boundary conditions:{

( ∂2

∂x2 + ∂2

∂y2 )u(x, y) = f(x, y), (x, y) ∈ Ω = [0, 1]× [0, 1]
∂
∂n

u(x, y) = φ(x, y) x, y ∈ ∂Ω.

This linear system has also been computed by Sidi [10] for testing DGMRES algorithm. The problem
has also been considered by Hank and Hochbruck [32] for testing the Chebyshev-type semi-iterative
method.

Let M be an odd integer, we discretize the Poisson equation on a uniform grid of mesh size h = 1/M
via central differences, and then by taking the unknowns in the red-black order we obtain the system
Ax = b, where the (M + 1)2 × (M + 1)2 nonsymmetric matrix A is as follows

(4.1)

Here, I and 0 denote, respectively, the (M + 1)/2× (M + 1)/2 identity and zero matrices and the
(M + 1)/2× (M + 1)/2 matrices T1 and T2 are given by

6
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T1 =



−2 0 · · · · · · 0

−1 −1
. . .

...

0
. . .

. . .
. . .

...
...

. . . −1 0
0 · · · 0 −1 −1


, T2 =



−1 −1 0 · · · 0

0 −1
. . .

. . .
...

...
. . .

. . .
. . . 0

... −1 −1
0 · · · · · · 0 −2


.

The numerical experiment was done for M = 31, 63, 127. Example 4.2. As shown in[32], applying
5−point central differences to the partial differential equation

∂2U

∂x2
+

∂2U

∂y2
+ d

∂U

∂x
= f(x, y), 0 < x, y < 1,

over the unit square Ω = (0, 1)× (0, 1) with the periodic boundary condition:

u(x, 0) = u(x, 1), u(0, y) = u(1, y)

yields a singular system with a nonsymmetric coefficient matrix. The mesh size is chosen as h = 1/m
for Ω, so that the resulting system has the following n× n coefficient matrix (where n = m2):

A :=
1

h2



Dm Im · · · Im
Im Dm Im

. . .
. . .

. . .

. . .
. . .

. . .

Im Dm Im
Im Im Dm


, (4.2)

Here Im is the m×m unit matrix and Dm the m×m matrix given by

Dm :=


−4 α+ α−
α− −4 α+

. . .
. . .

. . .

α− −4 α+

α+ α− −4

 ,

where α± = 1± dh
2
. The numerical experiment was done for d = 0.1, d = 0.3, d = 0.5, and m = 60.

For the matrix A of both (4.1) and (4.2) the identity Ae = AT e = 0 holds, so that Null(A) =
Null(AT ) = Span{e}, where e = (1, 1, . . . , 1)T . Furthermore, ind(A) = 1, as mentioned in [32, 10].
Even if the continuous problem has a solution, the discretized problem need not be consistent. Here,
we consider only the Drazin-inverse solution of the system for arbitrary right side b, not necessarily
related to f and φ.

As [16], we first construct a consistent system with known solution ŝ ∈ R(A) via ŝ = Ay, where
y = [0, . . . , 0, 1]T . Then we perturb Aŝ, the right-hand side of Ax = Aŝ = b̂, with a constant
multiple of the null space vector e and we obtain the right-hand side

b = b̂+ δ
e

∥e∥2
.

Consequently the system Ax = b̂ + δ e
∥e∥2

is solved for x. The perturbation parameter δ is selected

as 10−2 in our experiments.
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For these examples, the solution we are looking for is the vector ŝ, whose components are zeros
except

ŝ2M̂2−M̂ = −1, ŝ2M̂2−1 = −1, ŝ2M̂2 = −2, ŝ4M̂2 = 4, where M̂ = (M + 1)/2

for Example 4.1 and except

ŝm = 1, ŝm2−m = 1, ŝm2−m+1 = α−, ŝm2−1 = α+, ŝm2 = 4

for Example 4.2.

In Tables 1-4, we give the number of iterations (Its), the CPU time (Time) required for convergence,
and the error ( Error) for the DGMRES and IMDGMRES methods. As shown in Tables 1-4 the
IMDGMRES algorithm is effective and less expensive than the DGMRES algorithm.

Table 1. Application of IMDGMRES implementation to the consistent singular
system for Example 4.1

Table 2. Application of IMDGMRES implementation to the inconsistent singular
system for Example 4.1

Table 3. Application of IMDGMRES implementation to the consistent singular
system for Example 4.2 with m = 60(n=3600)

Table 4. Application of IMDGMRES implementation to the inconsistent singular
systemfor Example 4.2 with m = 60(n=3600)

5 Conclusion

In this paper, we have presented an improved versition of the DGMRES algorithm, called IMDGMRES,
for computing the Drazin-inverse solution of singular linear equations with arbitrary index. Numerical
experiments show that the Drazin-inverse solution obtained by this method is its computation time

8
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is less than that of solution obtained by the DGMRES method. So, we can conclude that the
IMDGMRES algorithm is a robust and efficient tool for computing the Drazin-inverse solution of
singular linear equations with arbitrary index.
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