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Big Data, Guizhou University, Guizhou, China

ABSTRACT
The surface crack of structure is an important sign to evaluate 
the safety of structure. In order to ensure the safety and relia
bility of the building structure, it is necessary to detect and 
monitor the surface cracks of the structure. Traditional artificial 
surface inspections are time-consuming because inspectors 
have different experience and knowledge, which can lead to 
misjudgments. Based on the basic framework of four deep 
convolution neural networks, their classifiers are reconstructed. 
To fully train these networks and simulate crack images taken in 
various situations in life, image enhancement techniques are 
used to extend the dataset. After training, compared with the 
established shallow network structure, they can learn the fea
ture information in the image more fully, and finally improve the 
accuracy. After further verification, it is found that one of the 
models can achieve an accuracy of 96.5%. To verify the univers
ality and validity of the model, two cross-datasets experiments 
were performed. The experimental results show the validity of 
the model, and the diagnostic precision is 98.23% and 99.04%, 
respectively.
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Introduction

Large structures, such as bridges, high-rise buildings, and highways, tend to 
degrade over time, causing damage to the health of structures (Kim et al. 
2019). Due to various environmental factors and changes in the internal 
structure of the building, the structural safety of all infrastructure is still 
challenging. (Sm, Qr, and Mua 2021) To ensure the structural safety of 
infrastructure plays an important role in structural maintenance, and it usually 
has an exponential relationship with the service life of infrastructure (Ye, Jin 
and Yun 2019). The health inspection of bridge buildings is very important to 
maintain traffic safety and protect people’s life and property (Sun et al. 2020). 
However, the current bridge structural health monitoring (SHM) technology 
is often lack of professional guidance detection, low application, and efficiency, 
and even reduces the safety and durability of infrastructure (X.Q et al. 2015). 
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There are potential safety hazards in bridges that have not been detected in 
time, which cause major safety accidents such as bridge collapse and casualties 
(Fu et al. 2016). Therefore, to detect potential safety hazards and reduce 
casualties and property losses as much as possible, the safety assessment and 
detection methods of infrastructure need to be improved (Sokolov et al. 2018). 
Real-time continuous monitoring of infrastructure structure is of great sig
nificance to improve the health and safety of the structure (Annamdas, Bhalla 
and Soh 2017).

Most modern infrastructure structures are concrete structures. At present, 
crack is the key parameter to directly indicate the structure condition in all 
kinds of assessment indexes to ensure the structural health (Kong and Li 
2019). According to the length, size, and shape of cracks, not only the service 
time can be estimated but also the safety and health status and remaining life 
of the building can be inferred (Chen and Zhao 2017). The cracks will have 
different characteristics due to the load, stress, temperature and climate, 
material, and construction quality (Ozcelik and Mehmet 2018). In order to 
improve the reliability of the structure, the surface cracks need to be mon
itored and repaired in time. Therefore, continuous and effective crack mon
itoring is of great significance to ensure the durability of building facilities (Ye, 
Jin and Chen 2019).

The traditional manual monitoring method relies on human eyes to moni
tor cracks, which is not only time-consuming and labor-consuming but also 
produces different results or negligence due to the different knowledge and 
experience of inspectors, and sometimes even poses a threat to the safety of 
inspectors (Kim and Cho 2018). Initially, support vector machine (SVM) 
(Nhat-Duc, Quoc-Lam, and Dieu Tien 2018) was used to classify cracks in 
concrete into crack-free and crack-free images by extracting features manu
ally. Yu et al. (2021) used support vector machine (SVM) to design an initial 
diagnostic classifier for concrete surface based on feature extraction. Other 
methods, such as k-nearest neighbors (KNN) (Ahmed et al. 2021), genetic 
algorithm and fuzzy logic (Ahmadkhah, Hasanzadeh, and Papaelias 2019), are 
also combined with support vector machine as a hybrid method to improve 
the accuracy of recognition. However, the performance of machine learning 
damage detection method depends largely on the features selected from the 
original signal. In addition, feature extraction is very time-consuming and may 
affect real-time performance in practical applications.

With the continuous development of computer vision technology, defect 
detection technology based on computer and deep learning algorithm tends to 
mature. Computer vision technology is often used in civil infrastructure 
condition assessment (Spencer, Hoskere, and Narazaki 2019). It solves many 
structural monitoring problems quickly and efficiently by extracting the fea
ture information of the image, and has good effect (Jetaraj et al. 2019). Deep 
learning (DL) technology has been successfully applied in computer vision, 
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target location, target detection, image segmentation, and image classification. 
Cui et al. (2021) proposed an improved attention mechanism full convolution 
neural network model Att-Unet to realize end-to-end pixel-level crack seg
mentation. Yang et al. (2020) proposed a transfer learning method based on 
DCNN to detect cracks, the proposed method models the knowledge learned 
by DCNN and transfers three kinds of knowledge from other research achieve
ments. Guo, Yuan, and Liu (2021) proposed a convolutional neural network to 
eliminate the noise interference of matching marks and identify crack char
acteristics, and the initial area of the fracture zone can be obtained. Yu et al. 
(2019) proposed a construction structure damage identification and position
ing method based on deep convolutional neural network, and automatically 
extracts high-level features from raw signal or low characteristics. Feng et al. 
(2019) proposed a high-precision damage detection system based on deep 
convolution neural network. The results show that the method has good 
practicability in damage monitoring. According to the results of the above 
researchers, it can be found that the crack detection using computer vision 
technology is more efficient than the traditional manual detection, which can 
not only quickly and accurately find the damage condition of the building 
structure but also further ensure the life safety of the detection technicians and 
reduce the economic loss caused by the structural collapse. Although some 
progress has been made in these methods, further research is still needed. This 
is mainly because the performance of the learning model is related to the 
complexity of the model. Most of the models in the above research are shallow 
structures. Although satisfactory results have been achieved on small data sets, 
in the face of complex monitoring environment in life, it is likely that it is 
difficult to give full play to their advantages because of poor data sets and 
simple model structure, in contrast, the deep structure has better performance 
after full training.

To solve the difficulties encountered in bridge concrete crack identification 
methods, their classifiers are reconstructed based on four deep convolutional 
neural network structures. The image enlargement method is used to simulate 
the images taken under the conditions of different angles, different illumina
tions and shadows in real life to expand the data set. While the model is fully 
trained, the super parameters of the model are optimized, so as to improve the 
accuracy of model recognition. Finally, cross-data set study is done to identify 
several other crack data sets to test the generalization ability of the models.

Methodology

Convolutional neural network (CNN) consists of several basic building blocks, 
some of which implement basic functions, such as convolution, pooling, full 
connection and activation. Convolution neural network obtains feature map 
by convolution operation. At each position, the units from different feature 
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map get different types of features. After a buildup layer, the pooled layer will 
be connected for down sampling operation, and finally the output result of the 
fully connected layer will be connected. A simple convolutional neural net
work structure is given in Figure 1 below. In this part, we mainly describe the 
basic calculation principle of convolutional neural network. The calculation 
principle of each different building block (layer) will be introduced below.

Convolution Layer

Convolution layer is the most important part of CNN. It includes a set of filters 
(also known as convolution kernel), which convolute with a given input to 
generate feature map. The size of these filters is (h × w × n), where h is the 
height, w is width of these filters, and n is the number of channels for a given 
input image (Uchida, Tanaka, and Okutomi 2018). Convolutional neural 
network is most commonly used in two-dimensional convolution layer, 
which has two spatial dimensions of height and width. The size of the 
commonly used filter is 3 × 3, 5 × 5 or 1 × 1. The two-dimensional convolution 
formula of two signals is defined as formula (1): 

R m;nð Þ ¼ g m; nð Þ�f m; nð Þ ¼
Xi¼n

i¼� n

Xj¼n

j¼� n
f i; jð Þ; g m � i; n � ið Þ (1) 

The symbol � in the formula represents convolution of two functions; g m; nð Þ

is the input image, f m; nð Þ is the filter, R m;nð Þ is the result of convolution 
calculation. We will use a specific example to explain the calculation process. 
As shown in Figure 2, the input is a two-dimensional array with length and 
width of 5. Let us record the shape of the array as (5,5). The height and width 
of convolution kernel array are 3, which is also called filter in calculation. The 
height and width of convolution kernel determine the shape of convolution 
kernel window, that is (3,3). The convolution kernel slides on the whole image 

Figure 1. Structure diagram of convolutional neural network.
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to generate the output feature map, in which the step size is a super parameter. 
In this example, the step size is 1. The visualization of the calculation process is 
shown as:

Pooling Layer

In real images, the features we are looking for will not always be fixed in the 
same position: even if the same object is continuously photographed, there will 
be pixel position offset. This will lead to the same edge corresponding to the 
output may appear in different positions in the convolution output, and then 
lead to errors and information loss, causing inconvenience to subsequent 
recognition. Pooling layer (PL) can alleviate and improve the transition 
sensitivity of convolution layer to feature location (Scherer, Müller, and 
Behnke 2010).

The pooling layer operates the blocks of the input feature map and 
combines their features to activate. Similar to the convolution layer, you 
also need to specify the size and stride of the pooling area. According to 
different calculation methods (maximum or average), they are called 
maximum stratification layer and average stratification layer. Given the 
window shape of m × n(in this article, the shape of the matrix in the 
example is 4 × 4), the maximum value is extracted by maximum pooling, 

Figure 2. An example of convolution computation, the step size is 1. The upper part is the 
convolution operation of multiple pictures, and the lower part is the visualization of one step in the 
convolution calculation.
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and the average value is extracted by corresponding average pooling. 
Pooling can effectively down sampling the input feature graph, which 
can reduce the number of parameters. Two examples of calculation results 
are shown in Figures 3 and Figure 4:

Activation Function

In CNN, the nonlinear activation function is usually used after the weight layer 
(including convolution layer and fully connected layer), which is also called 
Activation Layer (AL). The activation function will compress the input value 
into a small range (such as [0,1] or [- 1,1]), which is convenient for training at 
the next level. It is important to use the activation function after the weight 
layer because it allows neural networks to learn nonlinear mapping. In the 
absence of nonlinearity, the stacked network of weight layers corresponds to 
a linear mapping between input and output domains. Stacking enough weight 
layers (or increasing the depth) can theoretically approximate any model 
function, but such a fitting process will cause the data fitting to be too smooth, 
even for the data values that do not need to be saved. In fact, the function of 
activation function is to segment the data categories, to get a better fitting 
effect. The activation functions used in the model built in this article are listed 
below.

Figure 3. An example of Max pooling, the step size is 1.

Figure 4. An example of Avg pooling, the step size is 1.
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Sigmoid

Sigmoid is a universally used activation function in neural network, and its 
expression is shown as formula (2), and the functional relationship image is 
shown in Figure 5 below: 

fsigm xð Þ ¼
1

1þ e� x (2) 

It can convert a real number into a range of (0,1) and is often used for binary 
classification (Campo et al. 2013). It works better when feature differences are 
complex or not particularly large, Sigmoid function has the advantages of 
smoothness and easy derivation. The activation function is applied as the 
output layer of the deep convolution neural network built in this paper.

ReLU

ReLU, as an activation function, has special practical significance because of its 
fast calculation speed (Yarotsky 2017). If the input is negative, the output value 
activated by the ReLU function is 0; but if the input is positive, the input value 
will not be changed. ReLU is defined as formula (3), the function image is 
shown in Figure 6. 

frelu xð Þ ¼ 0; x< 0
x; x � 0

�

(3) 

Figure 5. Sigmoid function image.
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Fully Connected Layer

In a typical CNN, the full connection layer is placed at the end of the 
architecture, behind the convolution and pool layers. The fully connected 
layer corresponds essentially to the convolution layer of a filter of (1 × 1) 
size, where each cell is densely connected to all the cells of the previous layer 
(Wu and Zhou 2016).

Fully connected layers (FCL) play the role of “Classifier” in the whole 
convolutional neural network, which maps the learned “distributed feature 
representation” to the sample label space. The whole fully connected layer is 
composed of many neurons, also known as perceptron. Perceptron can receive 
multiple inputs and produce a single output. Figure 7 shows the perceptron 
and Figure 8 shows a simple fully connected layer. As shown in Figure 7, x1, 
x2,x3 are the input signal, y is the output signal of the perceptron. Each input 
signal has a coefficient associated with it, which is also called weight, and the 
weight reflects the importance of each input to the output. The output of 
neurons, 0 or 1, is less than or greater than a certain threshold by weighted 
sum 

Pwi xi. Many perceptron’s like this stack together to form a fully 

Figure 6. ReLU function image.

Figure 7. Neuron (Perceptron).
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connected layer. At the end of all convolution pooling processes, the output 
signature map is flattened and connected to these layers Alqahtani, et al., 
2021).

CNN Learning: Loss Function and Small Batch Gradient Descent

Binary Cross-entropy
Loss function is an index to measure the “deterioration degree” of convolu
tional neural network performance, that is, to what extent the current model 
does not match the monitoring data, and to what extent it is inconsistent. By 
minimizing the loss value, the model converges, and the error of model 
prediction is reduced. Therefore, different loss functions have great influence 
on the model. The following describes the loss function used in this paper.

Binary cross-entropy is a kind of cross-entropy, when there are only two 
output results, it is often used to calculate the loss. The expression of binary 
cross-entropy is given by formula (4), where y is the label(positive value 
returns 1, negative value returns 0), is the predicted probability of the point 
being positive for all n points. 

fp qð Þ ¼ �
1
n

Xn

i¼1
yi � ln p yið Þ þ 1 � yið Þ � ln 1 � p yið Þð Þ (4) 

Mini-Batch Gradient Descent
CNN’s learning process is precisely through adjusting the network parameters 
to make the input space and output space match correctly. In other words, the 
learning process is to minimize the loss by optimizing its parameters. The 
most intuitive but simple way to solve this problem is to make the loss function 
gradually reduce to the minimum by repeatedly updating the parameters. The 
gradient-based method is to find out the position with the largest change rate 
(that is, the steepest descent direction), and update and optimize the para
meters along this direction. The learning rate is the super parameter that 

Figure 8. A simple example of fully connected network.
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guides how to adjust the weight of the network through the gradient of the loss 
function, that is, the size of the parameter update. Each iteration in the training 
process of the training set is called the training period. At time t, the parameter 
updating equation of each training iteration is given by formula(5) and for
mula(6): 

θt ¼ θt� 1 � ηδt (5) 

δt ¼ ÑθΓ θtð Þ (6) 

In the above formula: Γ �ð Þ is the function represented by the neural network 
function with parameter θ, Ñ is the gradient, and η is the learning rate.

Small batch gradient descent is a compromise between batch gradient 
descent and random gradient descent. It divides the training set into several 
small batches, and each small batch is composed of relatively few training 
samples, which improves the convergence efficiency and stability. Then the 
gradient of each small batch is calculated, and the parameters are updated. 
Usually, training samples are randomly combined to improve the homogene
ity of training set.

Training Model
In this paper, based on four deep convolution neural network structures: 
VGG19 (Carvalho et al. 2017), InceptionV3 (Zhao et al. 2020), ResNet50 
(Wu, Shen, and Hengel 2019) and Xception (Chollet F .2017). Their input 
structure is changed to 256 * 256 * 3, and their classifiers are reconstructed 
adaptively.

After the convolution layer structure output the results, a global pooling 
layer is connected for average pooling to facilitate the connection of the 
fully connection layer, and then three fully connection layers are connected 
with the parameter sizes (number of neurons) of 512, 256, and 64, 
respectively.

In addition, dropout layers of the same size are added after each fully 
connection layer. During training, each time the data is transmitted, the 
dropout layer will randomly select and delete the neuron signals, and the 
deletion ratio of the model is set to 20% to suppress the over fitting of the 
model.

The programming language used in the experiment is Python, and the 
network models are built based on the framework of TensorFlow. CPU 
information: Intel(R) Core (TM) i9-10,900 K CPU @3.70 GHz 3.70 GHz, 
RAM:64GB. The optimization function used in the experiment is Adam 
optimizer. Adam optimizer is an effective random optimization method. It 
only needs a first-order gradient and only needs a small memory. The method 
calculates the adaptive learning rate of different parameters through the 
estimation of the first and second gradients.
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Different learning rate often led to different performance of the models. Too 
large learning rate will make the gradient drop too fast, resulting in the 
situation that the loss function keeps jumping around the extreme point but 
cannot find the extreme point; Too small learning rate often leads to the slow 
decline of gradient, and even the stagnation of loss function. Therefore, during 
the experiment, the learning rate can be set according to the rate at which the 
loss value decreases, after the comprehensive experiment, the learning rate is 
set as 1 × 10−4.

Results and Discussion

Data Preparation

The dataset SDNET2018 used in this paper is from Mark Maguire, 
a researcher of Utah State University in the United States (Dorafshan, 
Thomas, and Maguire 2018). It is a dataset for training, verification and 
benchmark of concrete crack detection algorithm based on artificial intel
ligence. SDNET2018 contains images of cracked and uncracked concrete 
decks. The data set includes cracks as narrow as 0.06 mm and as wide as 
25 mm. These images are color images, including images of various 
obstacles. Mark the images as type C (cracked) and type U (uncracked) 
according to whether there are cracks in the images. The pictures of 
cracked and uncracked concrete bridge decks are shown in Figures 9 and 
Figure 10 below:

Image Enhancement

As the photos in the data set are all real photos, there are few photos of 
concrete bridge deck with cracks (only 2,025 in total, accounting for about 
15% of the total). In addition, the background of each image is very similar, 
occupying a large area. Based on the above reasons, too little learning infor
mation may lead to the convolutional neural network cannot fully learn 
features and reach saturation, so the image enhancement method is used to 
increase the learning information.

In this paper, three methods are used to enhance the image of the original 
data set. The first is to flip the image randomly (including up and down and 
left and right); The second is to change the color randomly, from brightness, 
contrast, saturation, and hue to change the color of the image; Finally, the gray 
value and hue conversion are adjusted randomly. In the actual processing, the 
image is randomly superimposed by three effects. The following two groups of 
images show the effect after image enhancement. Figure 11 is an original 
cracking image, and Figure 12 shows four images after four times of image 
enhancement;
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Figure 9. All above are cracked images. From top to bottom: unclear and hard to detect cracks; 
small cracks; obvious and clear cracks.

Figure 10. All above are uncracked images. The upper part are smooth uncracked images, the 
lower part are rough uncracked images.
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Data Division

The dataset is divided into training data and validation data, accounting 
for approximately 4:1. A small batch random gradient descent method is 
used for training, and validation datasets are tested at the same time 
during each small batch training process. Based on the previous step 
(image enhancement), the total number of surface images of concrete 
was expanded to 98,512, all color images were resized to 256 × 256, and 
the information of three channels (R, B, and G) was preserved. The 
dataset is divided into 78,705 training images and 19,807 test images to 
make the deep convolution neural network fully trained. Table 1 is the 
number of images before image enhanced, Table 2 shows the number of 
different types of images after image enhancement.

Figure 11. An image of the original crack in the dataset.

Figure 12. Four images are obtained by image enhancing.
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Experimental Result

To explore the advantages of deep convolutional neural network over ordinary 
convolutional neural network, a shallow convolution neural network, and fully 
connected neural network are constructed. The former has 10 layers, of which 
seven layers are convolutional layer and three layers are fully connected layer, 
it also has three pooling layers and three Dropout layers. Another fully 
connected neural network (FCNN) structure is also constructed as a ten- 
layer structure, it also has three Dropout layers.

Table 3 shows the number of layers of the network structure and the 
training parameters they have.

To get stable results and make the results effective. The same number of 
training sets and test sets are used for the models constructed in this paper, and 
the loss function and activation function of each model are compared. The 
optimizer and learning rate are unified. The intermediate results in the model 
are normalized in batches, and the dropout layer is used to suppress the over 
fitting after the full connection layer. The most stable results were obtained after 10 
cross validations of each model. Finally, we adjusted the training process to a total 
of 100 epochs, The optimizer Adam is used and set the learning rate to 1� 10� 4, 
binary cross-entropy is used as a loss function. We use loss value, RMSE value and 
accuracy as the evaluation criteria for model performance. The lower the loss value 
and RMSE value, the higher the accuracy rate, the better the model performance, 
on the contrary, the worse the model performance. Table 4 shows loss values, 
RMSE values, and correctness rates for all models, Figures 13, Figure 14 and 
Figure 15 shows the change trend of loss, RMSE, and accuracy during all model 
training processes, respectively.

Table 1. Number of images before augmentation.
Class type Train folder Test folder Total(class)

Un-cracked 1620 405 2025
Cracked 9276 2319 11,595
Total(folder) 10,896 2724 13,620

Table 2. Number of images after enhancement.
Class type Train folder Test folder Total(class)

Un-cracked 37,932 9676 47,608
Cracked 40,773 10,131 50,904
Total(folder) 78,705 19,807 98,512

Table 3.
Model Total layers Trainable params Total params

VGG19 29 20,189,761 20,190,785
InceptionV3 318 22,330,017 22,368,545
ResNet50 182 24,096,257 24,153,473
Xception 139 21,368,617 21,427,241
CNN 16 500,897 501,153
FCNN 13 2,111,425 2,111,489
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From the above results, it can be seen that the deep convolutional neural 
network structure shows better performance than the shallow structure during 
training. However, even if a large enough training data set is used, it is difficult 
for shallow networks to extract the feature information of complex images. We 
can see that their loss value decreases slowly or even hard, and the accuracy is 
also very low. The four deep performances seem to be equal during training. 
To further explore their performance more accurately, we save the trained 
network and reverify them with new evaluation indexes.

Before that, we need to introduce some concepts TP, TN, FP, and FN. TP 
(True Positive): Positive samples predicted as positive by the model; it can be 
called the correct rate of judging to be true. TN (True Negative): Negative 
samples predicted as negative by the model; it can be called the correct rate of 
judging as false. FP (False Positive): Negative samples predicted as positive by 
the model; it can be called false-positive rate. FN (False Negative): Positive 
samples predicted as negative by the model; it can be called the false-positive 
rate.

The new evaluation indexes are accuracy rate, F1 index and recall rate, and 
the calculation formula are given below: 

Table 4. Loss, RMSE and accuracy of cross-validation results 
for each prediction model.

Model Loss RMSE Accuracy

VGG19 0.1790 0.2700 0.9297
InceptionV3 0.0958 0.2081 0.9639
ResNet50 0.1310 0.2616 0.9479
Xception 0.1297 0.2213 0.9520
CNN 0.4251 0.4283 0.7955
FCNN 0.6375 0.4776 0.6394

Figure 13. Change trend of loss.
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precision : P ¼
TP

TP þ FP
(7) 

Recall : R ¼
TP

TPþ FN
(8) 

F1,score : F1 ¼
2

1
Pþ

1
R

(9) 

Figure 14. Change trend of RMSE.

Figure 15. Change trend of accuracy.
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We randomly selected 18,000 cracked images and 18,000 uncracked images 
from the expanded dataset, and made the same marks as in the experiment, 
that is, cracked images are marked as positive samples and uncracked images 
are marked as negative samples. Then the four networks are further verified at 
the same time (the shallow network structure with poor performance is no 
longer verified). The confusion matrix results are shown in Figure 16, The new 
indexes are calculated as shown in Table 5.

Based on all the above results, it can be seen that the deep network structure 
shows better performance during training, the loss function and RMSE decline 
rapidly, and can reach a very low value, and the accuracy of verification is very 
high. After further experiments, it is found that although the performance of 
the four models seems to be similar during training, they still show different 
performances after reverification.

According to the new evaluation index, we draw the following conclu
sions about the performance of the model: Xception>InceptionV3>  

ResNet50> VGG19. As can be seen from Table 5, all indicators of 
Xception are very good, which are higher than 96%. In contrast, although 

Figure 16. Confusion matrix results of four models.

APPLIED ARTIFICIAL INTELLIGENCE e2014188-1243



the recall rates of InceptionV3 and ResNet50 are not low, the accuracy 
rate and F1 index are quite different from Xception, and the performance 
of VGG19 is even worse. We can find the reason from Figure 16, 
InceptionV3 and ResNet50 can also effectively identify the cracked 
image, but they will mistakenly regard some uncracked images as cracked 
images. Xception can recognize two types of images, and the accuracy is 
higher than them, so its indicators are very good. Finally, we have 
obtained a crack identification model with excellent performance in all 
aspects through experiments.

To verify the universality of the model (Xception), we also conducted cross 
dataset research, we found images on the Internet. Dataset-1: 40,000 concrete 
crack images (Zgenel and Sorguc 2018) and Dataset-2: 6069 bridge crack 
images (Xu et al. 2019). Model is used to identify these images. All the data 
in the dataset are directly used as the verification data. The verification method 
is the same as the above. The results of the confusion matrix are as Figure 17 
and Table 6.

It can be seen that in the experiments across-datasets, the model shows 
better performance. After recognizing the images of two different datasets, the 
recognition precision is as high as 98.23% and 99.04%. This proves the strong 
adaptability and applicability of the model, and also shows that the model is 
also practical in real life.

Table 5. Results of precision, recall and F1-score.
Model P R F1

Xception 0.9650 0.9678 0.9664
InceptionV3 0.9131 0.9402 0.9264
ResNet50 0.9004 0.9399 0.9197
VGG19 0.8829 0.9146 0.8985

Figure 17. Confusion matrix results of cross-datasets research.
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Conclusions

Based on the basic framework of four deep convolution neural networks, their 
classifiers are reconstructed, and a concrete crack recognition model is estab
lished. In order to solve the problem of insufficient training data and make the 
constructed model fully trained, the method of image enhancement is 
adopted. Through the superposition of various methods such as random 
flipping, changing illumination and changing color saturation, the situation 
of shooting from different angles and different weather environments in real 
life is simulated. Different from the shallow structure, the four deep models 
show good performance in the training process. It can be seen from the 
experimental data that in the face of complex data, the depth model can better 
extract the feature information in the image than the shallow model.

To accurately measure the performance of the four models, they were tested 
with new indicators, and the results of additional experiments showed that 
although they performed well in the training process, there were differences. 
Obviously, Xception has better performance in further research experiments. 
It can be seen from Table 5 that its precision, recall, and F1-score exceed 
96.5%. From the result diagram of confusion matrix, it can be seen that 
Xception has high recognition accuracy for positive and negative samples, 
while other models will regard many negative samples (uncrack images) as 
positive samples (crack images) although they perform well in the recognition 
of positive samples. In terms of universality, the model can accurately identify 
cross data sets, and the accuracy of identifying new concrete crack images and 
bridge crack images are 98.23% and 99.04%, respectively.

In general, the research of this paper shows that when facing images with 
complex information and difficult to identify, deep convolution neural net
work has advantages when fully trained by expanding data set and adjusting 
network structure combination parameters. The fully trained model also has 
excellent recognition ability on different data sets (facing the complex situa
tion of different environments in life). This provides a feasible theoretical basis 
for crack identification of concrete structure. However, in real life, the con
crete crack mode may be more complex and changeable than that in this study. 
The length, width and direction of cracks have an important influence on the 
failure of building structures. Therefore, it is necessary to accurately extract the 
important features of complex cracks. In the future work, various complex 
crack images will be collected directly, and the deep learning method will be 

Table 6. Precision, recall and F1-score of cross-datasets 
research.

Dataset P R F1

Dataset-1 0.9823 0.9918 0.9870
Dataset-2 0.9904 0.9869 0.9886
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used to detect the cracks on the image, so as to accurately determine the 
location and specific shape of the cracks.
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