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ABSTRACT

Aims: To assess the agreement of a global land cover map to reference imagery when
applied to a region (state) of the southern United States and to determine whether
different sampling designs or the use of broader land class definitions can overcome
problems associated with the inherent heterogeneity of land use in the region.
Study Design: We assessed the agreement of the Glob Cover 2009 global, medium
resolution land cover assignments within the State of Georgia to USDA NAIP reference
imagery. We performed the assessment using two statistically random sampling methods:
pixel-based and block-based sampling. We then grouped some land classes according to
possibilities of agreement relationships expressed by others, and assessed the
agreement using these systems.
Place and Duration of Study: State of Georgia (USA). Imagery and reference data
acquired in 2009.
Methodology: Sample: We examined 3,930 sample pixels or pixel blocks from 16 land
cover classes. Each sample was allocated a land class in the GlobCover 2009 database.
Each sample was interpreted as a land class through photo-interpretation of USDA NAIP
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imagery. An omission-commission matrix was developed from the relationship between
land cover map and reference interpretation, as was an estimated population matrix.
Statistics regarding agreement were developed using the latter matrix.
Results: Overall agreement for the state of Georgia was approximately 48% using both
pixel- and block-based assessments. Agreement increased with the implementation of the
possibilities of agreement relationships for both pixel- and block-based assessments.
Three forested land cover types, representing about 78% of the Glob Cover land classes
in Georgia, had agreement levels between 60 and 97% when possibilities of agreement
were employed.
Conclusion: The use of the Glob Cover 2009 land cover classification may be well suited
for broad, regional analysis and assessment of land cover trends. Moderate levels of
classification agreement for important resources (forested areas) were estimated within
the State of Georgia.

Keywords: Satellite imagery; agreement; stratified random sampling; producer's accuracy;
user's accuracy.

1. INTRODUCTION

One of the most time-consuming aspects of broad-scale landscape analysis and modeling
studies is the development of geographic data and associated information. Remotely sensed
spectral properties of features on the surface of the Earth are widely used in land cover
classification and categorization processes [1,2,3]. Land cover maps are one type of
thematic map for representing land-based resources as geographic information, and for
describing areas in an aggregated, socially constructed manner [4]. Global land cover
databases are geographic information that attempt to characterize land features on a global
scale and in a manner that could conceptually have a broad meaning [4]. For about two
decades, advances have been made in the development of global land cover databases
from remotely sensed imagery [5], with several global land cover databases available at no
cost to the public [6].

One of the latest global databases is the GlobCover 2009 global land cover map developed
in part by the European Space Agency [7].The GlobCover global land-cover map was
developed from medium spatial resolution (roughly 300 m) remotely-sensed data collected
by the Medium Resolution Imaging Spectrometer (MERIS) sensor that was installed within
the ENVISAT satellite [8]. The GlobCover map was developed with an international audience
in mind, therefore the land cover types are compatible with the Food and Agriculture
Organization of the United Nations Land Cover Classification System [8]. While these types
of products may be inadequate for detailed mapping of landscape features [9], they may be
suitable for describing broad-scale landscape patterns and for conducting environmental
analyses. For example, a portion of the GlobCover map covering China has been used to
assess the potential scope of biomass production [10]. However, a map such as this is no
more than an estimate of land use until it is compared to reference data [11].

Due to their broad coverage, global land cover maps can facilitate a number of types of
landscape analysis, yet the applicability of the data to a particular problem depends on the
quality and resolution of the data. It has been recognized that the methods employed in
developing global land cover databases may not always be able to recognize and
acknowledge special characteristics of different regions [12]. Because of this, Jung et al. [13]
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suggested that some global land cover maps are not necessarily suited for certain uses, for
example, as input for parameterizing carbon cycle models. Irrespective of the scope or
extent of the proposed application, the agreement of global land cover maps to reference
data should be evaluated prior to their use [6].

Assessments of agreement are often used to describe map quality pertaining to an entire set
of land cover classes or specific sub-sets of land cover classes [1]. A common approach to
the evaluation of the quality of thematic maps is to compare them to reference data within
the confines of time, cost, and access restrictions on the analysis [14]. Rigorous
assessments of the quality of global land cover maps have resulted in overall agreement
levels ranging from about 66 to 80%, depending on the method employed and data
assessed [15]. Arino et al. [16] assessed the GlobCover map using 2186 randomly located
sample points and expert interpretation of the reference data. The overall agreement for
what they considered the principal classes (cultivated and managed terrestrial land, natural
and semi-natural terrestrial vegetation, natural and semi-natural aquatic vegetation, artificial
surfaces, bare areas, and water, snow, and ice) was estimated to be 77.9%. Further, Yiming
et al. [6] assessed the quality of the GlobCover map using 243 permanently-established
research areas (e.g., FLUXNET meteorological tower sites), and estimated overall
agreement to be around 65%. Portions of the GlobCover map have also been assessed for
agreement at smaller scales: Song et al. [17] suggested that the GlobCover map
overestimates forest cover in North America and Pérez-Hoyos et al. [18] suggested that the
2005 version of the GlobCover map underestimated agricultural areas in Europe. For three
provinces in China, Li et al. [19] assessed the agreement of cropland represented in the
GlobCover map and cropland identified in a Chinese national land cover database, and
found regional differences due in part to heterogeneity of land uses across the landscape.

In this study, we performed an assessment of ability of the GlobCover map to describe land
cover features within, and land uses applied to, the State of Georgia, which is located in the
southern United States. The goal of this work was to assess the ability of the global land
cover map to accurately portray individual land cover types, through a sampling strategy that
provided an unbiased estimate of thematic agreement. The specific objectives were to (a)
assess the overall agreement of the GlobCover map with other reference imagery for its
ability to portray the resources and land use classes of the State; (b) determine whether
pixel- or block-based sampling units provide better agreement; (c) assess both producer's
and user's accuracies of the GlobCover map with respect to the various land use classes in
the State; and (d) quantify the changes in agreement that may occur if suggested
possibilities of agreement among classes [7] are employed.

2. METHODOLOGY

2.1 GlobCover 2009 Database

Surface (land) reflectance data in 15 different electromagnetic bands was collected by the
MERIS sensor [20], and was orthorectified and atmospherically corrected prior to the
development of the GlobCover map. The geolocation error of the publicly available map was
reported to be acceptable (77 m RMS) for a database of this scope [21]. The spatial
resolution of the raster data was reported to be 1/360º [7], or about 300 m, depending on
latitude. In Georgia, the average size of a GlobalCover raster grid cell (pixel) in the 1984
World Geodetic System (WGS 84) reference coordinate system is approximately 266 x 307
m (width and length) in the southern part of the State, and 254 x 308 m in the northern part
of the State.
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The GlobCover land classification system is hierarchical, follows a standardized
classification approach, and is compatible with the GLC2000 global land cover classification
system [22] which utilizes the Food and Agriculture Organization of the United Nations land
cover classification system [8]. There are 21 land cover types represented in the GlobCover
map; forested and agricultural classes dominant 16 of these classes found in the State of
Georgia. The land cover map was produced by applying to cloud-free MERIS full resolution
composites a regionally-tuned classification process [23]. Due to the medium spatial
resolution (about 300 m), pixels can often represent land containing a mixture of cover types,
which may contribute to land classification error [23]. Although the mission of the ENVISAT
satellite ended in 2012, the exploitation of its archived data continues [24], and an
assessment of this classification process can be of value to future endeavors.

2.2 Reference Data and Interpretation Protocol

Agreement between the global land cover map and the reference database is based on our
assumption that the units are homogeneous within the reference data. In order to apply this
assumption, our assignment rule indicated the dominant (primary) reference land cover class
within each sample unit, either the category represented by a single GlobCover pixel or the
category represented by a 3 x 3 pixel block. In this process, we determined a single,
dominant land class for each sample unit area using the GlobCover criteria (described in
[7]). While others (e.g., [20]) collected primary and secondary reference land cover classes
for litigious samples, our interpretation of the GlobCover classes in relation to actual land
uses in Georgia led to very few of these cases.

A pixel is a common assessment unit choice, and a block is another option; neither need to
be equivalent in size to a minimum mapping unit of a land cover map [25]. The reference
information was determined primarily from United States National Aerial Imagery Program
(NAIP) imagery, which has a 1 m spatial resolution, secondarily from United States
Geological Survey 1999 1-m color infrared orthophotograph quarter quadrangles, and finally
from older NAIP imagery. The NAIP imagery were temporally consistent (to one year of data
collection) with the date of collection of the MERIS data used to develop the GlobCover map,
and with the latest imagery generally available through Google Earth. However, if recent
land use activity were evident in the reference area within a sample unit, older NAIP imagery
were used to estimate conditions prior to 2009. The few cases where this was necessary
involved the final harvest (clear cutting) of some forested areas. However, other aerial
imagery was also employed to assist in differentiating forest types where the reference
interpretation was unclear (Fig. 1). These issues tended to occur in the northern portion of
the state, and mostly on national forest land. Additionally, these areas also were ones that
generally had continuous canopy cover and contained mostly natural forests (rather than
plantations) where it was difficult to separate coniferous and deciduous forests in the true
color NAIP imagery. In most of these cases, 1999 color infrared imagery captured during the
winter season was used to help differentiate coniferous and deciduous trees. In nearly all of
these cases, major changes in forest conditions (density, species composition) around the
sample areas had not occurred even a decade after the images were captured.
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Fig. 1. Color aerial imagery (2010) and color infrared imagery (1999) for a forested area
of the exact same location and extent in northern Georgia, USA.

Photo interpretation errors were minimized through the use of auxiliary (historical) imagery,
yet they were also minimized by using a single photo interpreter having nearly 25 years
experience using aerial images and teaching courses on aerial photogrammetry techniques.
The use of a single interpreter is debatable, though texts (e.g., [26]) on the subject often
allude to the use of teams, the training and auditing of teams, and the need for consistency
among team members. Variation in the interpretation of land classes will certainly exist
among teams members, and can exist within a single team member. The level of
interpretation error among teams members may be uncertain, and when detected, corrective
actions may need to be applied [26]. In Carrão et al. [20], four interpreters were used to
independently confirm the interpretation of land cover types in the reference data, although
this work does not conclude that four interpreters are more appropriate than a single, trained
observer. Wickham et al. [27] used teams (prior experience unclear) who underwent training
(to reduce individual subjectivity) and were guided by an experienced interpreter who
overrode assignments when randomly checked samples were audited. While this division of
labor may have been facilitated by regional knowledge of land by the teams, and may have
provided work process efficiencies, no test was performed to declare the team approach to
be more preferable than a single experienced individual. Zhu et al. [28] used two analysts to
assess all sample areas and a third to mediate differences between if they occurred between
the two assignments. This protocol was designed to minimize errors in photo interpretation.
However, in all of these cases information was lacking concerning the experience and
training of the interpreters, therefore drawing the conclusion that these designs are superior
to the use of a single experienced professional is premature. Neither these previous works,
nor the current work were designed to test this hypothesis.

Through careful attention to the distribution of land classes and forest types within the
reference areas, a very high level of confidence concerning the interpretation of land classes
from the reference data was realized. In most cases it was clear which land cover type in the
reference data was the dominate (> 50% by area) type in each sample area. In cases where
two land cover classes occupied large amounts of the sample area, careful measurement of
area of each type, and careful interpretation of the GlobCover assignment rules determined
which land cover type to assign. There were no doubtful reference points, and therefore
none were removed from the analysis. However, we understood that locational error should
be a concern around the boundaries of land cover classes [2,25]. Given the history of land
use in Georgia, there were very few large areas of homogenous land cover, and therefore
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GlobCover pixels generally contained areas with a great deal of edge (distinct differences
between land cover classes). Through frequent verification of geospatial location of the
validation data, misregistration was not evident. Other potential inconsistencies in the
interpretation process were minimized though the use of a standard interpretation scale
(1:4000). As suggested by Olofsson et al. [11], our guiding principle for the response design
was to develop protocols that would be considered operationally practical and consistently
implemented by the interpreter of the validation database.

2.3 Sampling Strategy

We developed a design-based assessment approach, using stratified random sampling, to
arrive at statements of agreement for the land classes contained within the GlobCover map.
The strata are the land cover classes of the GlobCover database that are found in the State
of Georgia. Chen and Wei [14] suggest that there is no current consensus in the literature on
the minimum sample size needed to adequately assess thematic map accuracy (agreement
with reference imagery). The selection of sample method and sample size seems to depend
on the differences in class proportion, spatial autocorrelation, and the type of agreement
indices to be developed. Practical constraints often guide the choice of sampling unit [29]
since agreement assessments can be rather expensive [11]. Further, opinions vary on the
choice of spatial unit for the assessment of agreement [30,31]. As we alluded to earlier, our
response design was developed as both (a) a pixel-based assessment of agreement and (b)
a block-based assessment of agreement. The pixel-based approach is rather
straightforward: a GlobCover pixel is selected at random within each stratum and compared
to the reference land class covering the same area. Considering potential problems with
thematic and positional agreement of the GlobCover map, we also developed a 3 x 3 block
of pixels situated around a selected pixel, and compared the land cover type suggested by
the center pixel to the dominant reference land class represented by the 9-cell area.
However, when exploring the GlobCover map, the ability to place a 3 x 3 block of pixels
totally (or mostly) within a single land cover type was difficult (in contrast to [20]) due to the
"speckling" pattern of the land classes in the GlobCover map. Forcing this requirement
would also have resulted in a biased sample that avoided areas of heterogeneity [26]. Part of
the problem can be attributed to the inherent diversity of land cover classes spread across
the landscape. Part of the problem can also be attributed to the fact that individual pixels
were assumed independently assigned to a land cover class during the classification
process, and often those that should have been considered similar to others nearby were
classified differently, resulting in a speckling pattern [32]. We recognize that a cluster of
mixed land classes can affect the outcome of the assessment of a single class, however the
trade-off is to bias the assessment by only considering larger, homogeneously classed
areas. Therefore, one sampling unit (spatial support unit) was defined as a single randomly
selected GlobCover pixel, and the other a 3 x 3 block of pixels. The pixel-based sampling
units and the center of each block were initially located as the pixels of the GlobCover map
that intersected a random point, and as in Wickham et al. [33], and were then co-located on
high-resolution imagery representing the reference condition on the ground.

A stratified random sampling method was used to select the sample units and to prepare the
ground reference data. In general, this method allocates sample units to land cover classes
based on the extent of the land cover classes found in the State of Georgia. Further, Lo and
Watson [34] have suggested that this method works well in swampy coastal areas with both
simple and complex spatial patterns of vegetation. However, if a sample is allocated in
proportion to the area of each strata, some strata would have very few samples, and others
would contain unnecessarily large samples [11]. With few samples located in areas that are
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small in proportion, the probability of obtaining an error-free sample or an disproportionately
error-prone sample is high [35]. Chen and Wei [14] illustrated cases where minimum sample
sizes were required for land cover classes, and Scepan [36] assumed a small minimum size
(25 sample units) for an assessment of a global database. We decided that conservatively,
100 sample units was necessary to adequately sample the smaller land classes, therefore a
minimum sample size for each land cover class was assumed (as in [37]). Congalton and
Green [26] also suggest that a minimum of 100 samples are necessary when a large area is
being assessed, or when there are a relatively large number of classes to assess. While we
assumed a minimum number of sample points for the smaller land classes represented, we
also assumed a variable number (1 point per 5,000 ha) for the larger land classes
represented in Georgia (Table 1). We made this assumption in light of what others suggest -
that additional samples beyond those reasonably needed to address agreement can add
little to the analysis [38]. We viewed this assumption as one that provides a balance between
the statistical rigor necessary and the time and cost of the assessment. Sample units were
selected from the set of non-overlapping and spatially exhaustive units contained within each
land class [31]. The total number of sample units selected with this process (3,930) is
greater than the estimated number needed (873) for a worst-case scenario (as described in
[26]) involving 16 classes, class proportions of 50%, and a desired precision of 5%.
However, we felt that our chosen sample size was a practical compromise between time
available and data necessary [39] to adequately represent each of the land classes across
the expanse of the State.

While there is no general consensus on standard approaches to assessments of agreement
[30,40], we provide the estimated population matrix and three measures of agreement as
indicators of the classification agreement of the GlobCover 2009 map to USDA NAIP
imagery. Agreement between the global land cover map and the reference data will be
described by overall, producer's, and user's accuracies for both types of sampling units (a
single randomly selected pixel, or a 3 x 3 block of pixels) in conjunction with an estimated
population matrix. The estimated population matrix is derived from the omission-commission
matrix, and illustrates the proportion of agreement for each land cover class and the
proportion of area misclassified [31]. Overall agreement (percent of pixels correctly

classified) provides an indication of the probability that a randomly selected location within
the map has been classified correctly [41]. Overall agreement [33] is computed as




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Here, N represents the total number of pixels in the State, h represents a land cover stratum,

hp̂ represents the sample proportion of pixels in stratum h correctly classified, and Nh

represents the number of pixels in the stratum. The result effectively represents an area-
weighted overall agreement for the entire collection of strata. In order to develop user's
accuracy measures for each land class, the following are defined using the omission-
commission matrix values (from [26]):
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Table 1. Major GlobCover land classes in the State of Georgia, their total area, and the
sample size used in the assessment

GlobCover class legend value Class
value

Area
(1000 ha)

Sample
size

Post-flooding or irrigated croplands 11 --- ---
Rainfed cropland 14 51.6 100
Mosaic cropland (50-70%) / vegetation (20-50%) 20 245.0 100
Mosaic vegetation (50-70%) / cropland (20-50%) 30 744.0 149
Closed to open (>15%) broadleaved evergreen and/or
Semi-deciduous forest

40 0.1 ---

Closed (>40%) broadleaved deciduous forest 50 5,819.1 1,164
Open (15-40%) broadleaved deciduous forest 60 75.7 100
Closed (>40%) needleleaved coniferous forest 70 3,783.6 756
Open (15-40%) needleleaved coniferous forest 90 --- ---
Closed to open (>15%) mixed forest 100 2,134.1 468
Mosaic forest/shrubland (50-70%) / grassland (20-50%) 110 157.6 100
Mosaic grassland (50-70%) / forest/shrubland (20-50%) 120 149.1 100
Closed to open (>15%) shrubland 130 15.4 100
Closed to open (>15%) grassland 140 1,464.9 293
Sparse (>15%) vegetation 150 0.1 ---
Closed (>40%) broadleaved, regularly flooded, fresh
water

160 12.0 100

Closed (>40%) broadleaved, semi-deciduous or
evergreen, regularly flooded, saline water

140 161.5 100

Closed to open (>15%) vegetation on regularly
flooded or waterlogged soil

180 3.1 100

Artificial surfaces and associated areas 190 55.0 100
Bare land 200 0.2 ---
Water 210 156.1 100

Total 15,235.0 3,930


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 
k

i
ijj nn

1

(3)

The number of samples for each land cover class (Table 1) are the row totals represented by
ni+. The values n+j represent column totals in the error matrix. The user's accuracy for land
cover class i is







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nUA (4)

In this case, the number of correctly classified pixels (nii) is divided by the row total (ni+). The
user’s accuracy (an expression of the error of commission) provides an indication of the
likelihood that a pixel classified as a certain land cover class actually is that land cover class
in the validation (reference) database. In other words, it is an estimate of the probability that
a given pixel will appear on the ground as the land class that it was assigned.
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The producer's accuracy (an expression of the error of omission) provides an indication of
the percentage of the area of a certain land class in the validation (reference) database that
was actually mapped as that land class. It is suggestive of the proportion of a given land
cover class that was correctly classified. In order to determine the producer's accuracy for
each land class, we developed an estimated population matrix by first applying the following
adjustment to each entry in the omission-commission matrix in order to express each value
as a proportion of the study area.
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The producer's accuracy for land cover class j is then


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Confidence intervals at the 95% confidence level were computed for the overall, user's and
producer's accuracies using the methodology described in [20]. Whether using the omission-
commission (confusion) matrix or the estimated population matrix, the overall and user's
accuracies are the same.

The methods employed in developing global land cover databases may not always be able
to recognize and acknowledge special characteristics of different regions [12]. For land cover
maps, the various statements of agreement can be sensitive to the level of aggregation of
land classes. For example, maps employing a great number of classes are likely to be less
accurate according to the overall accuracy metric, than similar maps employing a fewer
number of classes [13]. Arino et al. [16] and Bontemps et al. [7] have suggested that
possibilities of agreement measures would better represent the utility of the map to the user.
Due to various sources of confusion, there may be cases where the validation database and
the GlobCover database are in agreement when a class falls within a range of categories
that include a mosaic class and complies with dominance criteria in the category definition.
These possibilities of agreement therefore involve similarities between the GlobCover land
cover map and the reference data that are different from the diagonal cells in the omission-
commission matrix. We did not engage in land cover class aggregation per se, or in a simple
expansion of the major diagonal [26], because the classification scheme is comprised of an
ordered list of discrete classes that are not necessarily similar in theory. Therefore we
followed the suggestion of Bontemps et al. [7] and recognized a number of possibilities of
agreement relationships (Table 2) in a supplemental analysis of land cover classification
agreement.

When the adjusted classification approach is employed,
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with each of these using the relationships

jc pg   (10)

  ib pf (11)

Here, b represents a row in the estimated population matrix, while c represents a column.
The set g+c (Cj) represents the reference classes that are recommended for an assessment
approach using possibilities of agreement relationships (Table 2) to the determination of the
producer's accuracy of land class j, while the set fb+ (Bh=Bi) represents the land cover
classes that are recommended for a similar approach to the determination user's accuracy of
land class i; fb+ and g+cdo not necessarily include all of the classes within a row (b) or column
(c), but reflect the relationships described in Table 2 as well.

Finally, when it is presented, the kappa statistic is always smaller than the measure of
overall agreement, yet it has been suggested to under-estimate the probability of a correct
classification [30]. We acknowledge that the kappa statistic is not recommended by some
[43], and have chosen not to present it here.
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Table 2. Interactions between the GlobCover and the reference data that suggest a
possibilities of agreement approach in the land cover analysis (from [7]).

GlobCover land class Reference data
11 - Post-flooding or irrigated croplands 14 - Rainfed croplands

14 - Rainfed croplands 11 - Post-flooding or irrigated croplands

20 - Mosaic cropland / vegetation 11 - Post-flooding or irrigated croplands
14 - Rainfed croplands

30 - Mosaic vegetation / cropland

40 - Closed to open (>15%) broadleaved
evergreen and/or semi-deciduous
forest

50 - Closed (>40%) broadleaved deciduous
forest

60 - Open (15-40%) broadleaved deciduous
forest

70 - Closed (>40%) needle-leaved coniferous
forest

80 - Open (15-40%) needle-leaved
coniferous forest

100 - Closed to open (>15%) mixed forest
130 - Closed to open (>15%) shrubland
140 - Closed to open (>15%) broadleaved

evergreen and/or semi-deciduous
forest

110 - Mosaic forest/shrubland/grassland

40 - Closed to open (>15%) broadleaved
evergreen and/or semi-deciduous
forest

50 - Closed (>40%) broadleaved deciduous
forest

60 - Open (15-40%) broadleaved deciduous
forest

70 - Closed (>40%) needle-leaved coniferous
forest

80 - Open (15-40%) needle-leaved
coniferous forest

100 - Closed to open (>15%) mixed forest
130 - Closed to open (>15%) shrubland

40 - Closed to open (>15%)
broadleaved evergreen and/or
semi-deciduous forest

50 - Closed (>40%) broadleaved
deciduous forest

60 - Open (15-40%) broadleaved
deciduous forest

70 - Closed (>40%) needle-leaved
coniferous forest
80 - Open (15-40%) needle-leaved
coniferous forest

100 - Closed to open (>15%) mixed forest
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3. RESULTS AND DISCUSSION

In general, the Glob Cover land cover map seems to represent certain broad sets of land
classes of the State of Georgia in a logical manner (Figure 2). This non-quantitative
perspective is informative for landscape-level descriptions of resources. In the following
sections, we describe pixel and pixel-based and block-based assessments of land cover
map and reference data agreement along with the measures of agreement described above.

3.1 Using Pixels as the Sampling Unit

The overall agreement of the GlobCover 2009 map for the State of Georgia was estimated to
be about 47.8% when agreement was defined as a match in land class between the
reference data and the GlobCover land class assigned to the sampled pixels (Table 3). An
absolute precision of 1.65% at the 95% confidence level was obtained, thus the overall
agreement was estimated to be within the range [46.2,49.5]. In examining the estimated
population matrix (Table 4), one can reasonably arrive at a conclusion that there is a
considerable amount of confusion among land cover classes. For example, the largest
single-class sample of GlobCover pixels (GlobCover class 50 - closed, deciduous forests)
was assigned to 15 different reference land classes, according to the reference data. As we
noted, the producer's accuracy provides an indication of the percentage of the area of each
land class in the reference data that was actually mapped as that land class. When using the
pixel as a sample unit, estimated producer's accuracies (Table 5) were highest for closed,
deciduous forests (86.0%), water (68.9%), closed broadleaved, flooded, saline forests
(65.7%), and closed coniferous forests (62.6%). However, estimated producer's accuracies
were also very low for the closed to open shrubland (0.7%), the mosaic grassland / forest-
shrubland (8.0%), and the mosaic vegetation / cropland (7.0%). Each of these were often
classed as closed coniferous or close deciduous forests in the GlobCover map. With the
exception of closed to open shrubland, each were also often classed as closed to open
grassland. Each of these were meant to represent heterogeneous land classes, and perhaps
were more difficult to determine in the southern United States than in other areas of the
world, even though an equal-reasoning regional stratification process was used in the
development of the land cover map [7].

The user's accuracy provides an indication of the likelihood that a pixel classified as a
certain land cover class actually is that land cover class on the ground. The estimated user's
accuracy when individual pixels were used as the sampling unit was highest for closed to
open vegetation on regularly flooded soil (93%), artificial surfaces (89%), water (89%), and
rainfed cropland (87%). The estimated user's accuracy for the large classes was moderate:
closed deciduous forests (47.7%), closed coniferous forests (57.7%), closed to open mixed
forests (67.5%). The estimated user's accuracy for several classes on the landscape was
low: closed deciduous forests in regularly flooded, saline water areas (6.0%), closed to open
grassland (14.3%), closed to open shrubland (18.0%). In the case of closed deciduous
forests in regularly flooded, saline water areas, these were mostly considered vegetation on
flooded land (not necessarily saline water), even though the data were derived through direct
association with reference data in the land classification process [7]. The GlobCover closed
to open shrubland class was often misapplied to artificial surfaces or bare land. The
GlobCover closed to open grassland class was often misapplied to rainfed cropland, mosaic
cropland / vegetation (or vice versa). Confidence intervals ranged from 3 to 10% around the
estimate, with tighter intervals suggested for those classes that had larger sample sizes.
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Fig. 2. Allocation of broad land cover classes from the GlobCover 2009 database for
the State of Georgia
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Table 3. Overall agreement and precision for the analyses conducted

Sample Unit Class aggregation Overall agreement (%) Overall agreement
absolute precision
(%)

Pixel No 47.8 1.65
Pixel Yes 57.1 1.59
Block No 47.9 1.62
Block Yes 59.1 1.54

aUtilizing the possibilities of agreement noted in Table 2.

3.2 Using Pixel Blocks as the Sampling Unit

When pixel blocks were used as the sampling unit, the overall agreement of the GlobCover
2009 map for the State of Georgia increased slightly, to about 47.9% (Table 3). The absolute
precision of the overall agreement was estimated to be 1.59% at the 95% confidence level,
thus the overall agreement was estimated to be within the range [46.4,49.5]. This information
suggests that the GlobCover land classification moderately agrees with the reference data.
As when using individual pixels as the sample units, when pixel blocks are used as the
sampling units, a considerable amount of confusion among land cover classes occurs. The
estimated producer's accuracies (Table 5) were highest in closed broadleaved, regularly
flooded, fresh water forests (97.9%), grasslands (92.9%), and closed deciduous forests
(92.1%). However, as before, the estimated producer's accuracies were also very low for the
closed to open shrubland (0.7%), the mosaic grassland / forest-shrubland (4.9%), and the
mosaic vegetation / cropland (5.2%) class. Each of these were often classed as closed
coniferous or closed deciduous forests in the GlobCover map. And as before, with the
exception of closed to open shrubland, each were also often classed as closed to open
grassland.

The estimated user's accuracy when pixels blocks were used as the sampling unit was
highest for closed to open vegetation on regularly flooded soil (90%), and artificial surfaces
(98%). The estimated user's accuracy for the large classes was moderate: closed deciduous
forests (40.8%), closed coniferous forests (58.5%), closed to open mixed forests (78.2%). As
in the previous analysis, the estimated user's accuracy for several classes on the landscape
was low: closed deciduous forests in regularly flooded, saline water areas (5.0%), closed to
open grassland (4.8%), closed to open shrubland (8.0%). Again, similar to the previous
analysis, (a) in the case of closed deciduous forests in regularly flooded, saline water areas,
these were mostly considered vegetation on flooded land (not necessarily saline water); (b)
the closedto open shrubland class was often misapplied to artificial surfaces or bare land,
and (c) the closed to open grassland class was often misapplied to rainfed cropland, mosaic
cropland / vegetation (or vice versa). As with previous cases, the confidence intervals for
these classes ranged from 3 to 10% around the estimate, with tighter intervals suggested for
those classes that had larger sample sizes.
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Table 5. Producers and users accuracy for GlobCover land classes in the State of
Georgia, using a single pixel and a pixel block as the sample unit.

Single pixel Pixel block
GlobCover
class value

Producer’s
accuracy
estimate
(%)

User’s
accuracy
estimate
(%)

Producer’s
accuracy
estimate
(%)

User’s
accuracy
estimate
(%)

14 6.5 87.0 12.3 65.0
20 15.1 36.0 19.6 56.0
30 23.2 26.8 20.0 44.3
50 86.0 47.7 92.1 40.8
60 41.8 30.0 35.1 19.0
70 62.6 53.7 76.9 58.5
100 53.7 67.5 51.9 78.2
110 8.0 46.0 4.9 53.0
120 7.0 35.0 5.2 21.0
130 0.7 18.0 0.7 8.0
140 48.1 14.3 92.9 4.8
160 13.9 27.0 97.9 12.0
170 65.7 6.0 61.4 5.0
180 1.4 93.0 1.3 90.0
190 9.4 89.0 9.6 98.0
210 68.9 89.0 79.6 77.0

3.3 Possibilities of Agreement among Classified Pixels and Pixel Blocks

As we expected, when the possibilities of agreement relationships (Table 2) are employed,
measures of estimated agreement increase. When individual pixels were assumed to be the
sampling units, estimated overall agreement increased to 57.1%. The absolute precision of
the overall agreement was estimated here to be 1.62% at the 95% confidence level, thus the
overall agreement was estimated to be within the range [55.5,58.7]. These results represent
nearly a 10% increase in estimated agreement. Given the relationships noted in Table 2, one
notable change in estimated agreement arose: the producer's accuracy of the closed to
open mixed forest increased from 53.7% to 96.9%. The user's accuracies of the closed
deciduous forest rose from 47.7% to 60.5%, and the closed coniferous forest rose from
53.7% to 66.0%. Other minor increases in estimated user's and producer's accuracy were
also noted.

When pixel blocks were assumed to be the sampling units, overall agreement increased to
59.1%. The absolute precision of the overall agreement was 1.54% at the 95% confidence
level, thus the overall agreement was estimated to be within the range [57.5,60.6]. This
represents nearly an 11-12% increase in estimated agreement. Notable changes in
estimated producer's and user's accuracies include the following: (a) the estimated
producer's accuracy of the closed to open mixed forest class increased from 51.9% to
98.7%; (b) the estimated user's accuracy of the closed deciduous forest increased from
40.8% to 59.8%; and (c) the estimated user's accuracy of the closed coniferous forest class
increased from 58.5% to 72.0%. Confidence intervals for these estimates were very similar
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to those developed earlier for the single pixel and pixel block assessments of land cover
classes.

3.4 Discussion of Findings

Our results are based on a sample size larger than other reported studies involving the
GlobCover global landcover map [6,16,17,18,19]. While our study was situated in a region
where land cover agreement had not previously been assessed, the overall agreement of
our assessment is slightly lower than most of these previous assessments. We agree with
[19] that some of the problems in land cover classification are due in part to the
heterogeneity of land uses across the landscape. The State of Georgia contains a high level
of heterogeneity of land cover types, due in part to the systems employed to distribute land
to colonists in the 17th and 18th centuries. As Smith et al. [44] suggested, when the
heterogeneity of land cover classes increases, the probability that a pixel in a database
(particularly one larger than the average patch size) will be misclassified should increase.
Pflugmacher et al.[5] similarly suggested that agreement tends to be lower in areas with
complex, heterogeneous land uses and where there exist spectrally similar land classes. In
areas where the patches are larger than average, the probability of misclassification of a
pixel should decrease [44]. While there were some areas of contiguous large patches in the
northern mountains and along the coasts, these were not in sufficient supply to influence the
overall agreement of the database with the reference imagery. Areas of disagreement
between the GlobCover global land cover map and the validation data reflect issues that
perhaps need more attention on behalf of the producers of the map [29]. These issues
include (a) shrubland and mosaic vegetation classes being misclassified as deciduous or
coniferous forest classes; and (b) misapplying shrubland or grassland class labels to bare
land, cropland, or artificial surfaces.

Other areas of confusion can arise between forest successional stages. Forest management
is a cyclical, progressive process that occurs over a long period of time on a specific area of
land, thus forests may be considered open and forested when the trees are very young
(recently planted or regenerated) or very old [45], and closed during the intermediate stages.
In our analysis, if at any time it were clear that trees were being grown on a piece of land, it
was considered forested. However, the period immediately after harvest and during or after
site preparation (if artificially regenerated) could have easily been confused with other land
classes. Further, mixed forest types can become confused with other forest types, non-tree
vegetation, and even cultivated land [15]. Most global land cover maps are unable to
adequately discriminate among these classes due to the mixture of different vegetative life
forms and their reflective qualities. Mapping a continuum of land cover features as a single
discrete category can therefore be problematic [1], particularly as the heterogeneity of
landscape features is greater than the spatial resolution of the remote sensor can
accommodate [44]. The ambiguous signature described by a pixel can test the sensitivity of
a classification process to different combinations of classes [13]. This separability of classes
with similar spectral signatures seems to be a common problem for global land cover
mapping projects [13].

In terms of sampling design, one could have arrived at measures reflecting greater
agreement by restricting the placement of pixels and blocks in a non-probabilistic (and
undesirable) manner to areas across the landscape that were very homogenous in nature
[25], however, we chose to adhere to the random nature of sample point placement. The
statistical basis for the inferences derived is ensured through the use of probability sampling
[44]. In many cases, the characteristic resolution of features in urbanized areas is relatively
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small compared to the size of a GlobCover pixel, therefore a large number of mixed pixels
can be located in urban areas, leading to a high degree of map variability [47]. Stehman and
Wickham [31] also note that pixel-based assessments are generally more sensitive to
location error (which is around 77 m in MERIS data [16]) than assessments using larger
spatial units such as blocks. While our measures of agreement tended to increase when
using a block of pixels, the increase was marginal. Therefore, in areas where there is
considerable heterogeneity in land cover classes across the landscape, the use of a larger
spatial sampling unit does not seem to sufficiently increase the efficiency or level of
agreement from the assessment process.

We noted through our literature review that a global land cover map can be used to assess
land-cover trends, to study managed and natural ecosystems, and to facilitate regional and
global sustainability and climate change modeling [16]. However, Jung et al. [13] found that
the cropland and natural vegetation mosaics were the least reliable land cover classes in an
assessment of several global land cover maps. Further, others have indicated that the
classification agreement of some categories (e.g., wetland and mixed forests) can be
sensitive to the landscape patch size [48]. We have attempted to illustrate that while the
GlobCover 2009 map may in fact be of value for facilitating an assessment of resources on a
regional level, the amount of heterogeneity inherent across the landscape can cause the
misclassification of land classes and the misapplication of class labels to certain land
classes.

4. CONCLUSION

Although several validation exercises involving the GlobCover 2009 global land cover map
have been previously performed, this is perhaps the most extensive examination in terms of
validation points, and the first exclusively within the United States. This study focused on the
ability of a land cover map, developed to represent global land resources, to represent well
the resources of a specific yet important forest area in the southern United States. While a
relatively robust statistical design was employed, the estimated classification agreement was
moderate (yet below 50%) when either an individual pixel or a block of pixels were used as
the sampling units. Closed canopy mixed forest areas, coniferous forest areas, and
deciduous forest areas, three of the broadest land types in the State of Georgia, and
representing about 78% of the GlobCover land classes in the State, had estimated user's
and producer's accuracies ranging from 60 to 97% when a classification approach was
employed using possibilities of agreement among land classes.
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