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ABSTRACT

Aims: In the present paper, we have examined the interaction between formal, intuitive and
algorithmic knowledge in the solution for the subtraction operation (Fischbein, 1994).
Study design: Qualitative analysis.
Place and Duration of Study: Department of Didactic, Organization and Investigation
Methods (University of Salamanca), between February 2005 and July 2006.
Methodology: We included the verbal protocols of nine children aged between seven and
ten years old who solved a total of 180 subtractions were analyzed. The volume of data
obtained via verbal protocols has allowed us to study the influence of the conceptual
framework and the way in which the children interpret algorithmic process in the first stage of
teaching.
Results: The results have allowed certain suggestions to be made with regard to the relation
between formal, procedural and intuitive components that have a bearing on the generation
of errors, and offer deep insights into how teachers influence the acquisition of mathematical
concepts in the primary education stage.
Conclusion: we consider as influential in the origin of the subtraction error is that the child’s
intuitive interpretations formed in structural schemata, the vocabulary that forms part of
these, and the semantic interpretation of zero uphold the sources that generate analogue
transfer. It is important to consider its influence in order to improve the algorithmic teaching
processes.
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1. INTRODUCTION

Research in the field of systematic errors made during the learning of the subtraction
algorithm comes from different theoretical perspectives. Firstly, the syntactic approach,
related to VanLenh’s Repair Theory, which has provided important results regarding the
procedural mechanisms that govern the generation of systematic errors made in the process
of solving a subtraction algorithm (Brown and Burton 1978; Brown and VanLehn 1982;
VanLehn, 1982, 1983, 1986, 1987, 1990; VanLehn and Brown 1980; Young and O’Shea,
1981). This theoretical framework explains the learning process of cognitive skills in
instructional settings (VanLehn, 1990, p. 12), and how and why we make mistakes. The
theory suggests that when a procedure cannot be performed, an impasse occurs and the
individual applies various strategies, which are called “repairs”, to overcome the impasse.
Some repairs generate incorrect results called "buggy" procedures. Repair theory assumes
that people learn procedural tasks by induction and that bugs are introduced in the examples
provided during the instruction or the feedback received while doing practice (Brown and
VanLehn, 1980; VanLehn, 1990).

The second approach employed corresponds to the line of research which evaluates types
of comprehension and the conceptual foundation that children acquire when learning the
multiple digit subtraction algorithm.

A deep analysis of the latter approach has been carried out by authors such as Fuson, 1986,
1992; Fuson and Briars, 1990; Hiebert and Lefevre, 1986; Hiebert and Warne, 1996;
Ohlsson and Rees 1991; Resnick, 1982, 1983; Resnick and Omanson, 1987; Steffe and
Cobb, 1988. These authors consider the comprehension of the principles and concepts that
organise the learning process as essential in order to avoid the errors which arise during
learning. They therefore study the existence of a relation between understanding and skills
in mathematics for children and instruction, and how these influence this relation (Baroody
and Ginsburg, 1986; Cockbourn and Littler, 2008; Hiebert and Wearne, 1996; Kamii, 1985).

On this theoretical level we could also refer to other research focused on the influence of the
semantic structures of arithmetic problems on the completion of those problems (Fischbein,
et al., 1985). From the results of these studies we can deduce that the relationship between
the formal intuitive components of mathematics learning (Fischbein, 1994) and linguistic
knowledge is a key element in the generation of errors within problems containing the
operations of multiplication and division. In a similar way, as regards the semantic structures,
we have mentioned an important theoretical model that focuses its attention on the influence
of semantic interpretations within arithmetic operations. Fischbein’s Theory (1987, 1994,
1999) described the notion of intuitive models and the role they play in algorithmic
knowledge.

“According to Fischbein, intuitive knowledge is a type of immediate, implicit, self-evident
cognition that leads in a coercive manner to generalizations” (Tirosh and Tsamir, 2004,
p.537). Fischbein considered the interaction between three of the components of
mathematics knowledge: intuitive, formal and algorithmic. “The formal aspect refers to
axioms, definitions, theorems and proofs. The algorithmic aspect refers to solving techniques



British Journal of Educational Research, 2(1): 20-41, 2012

22

and standard strategies. The intuitive aspect refers to the degree of subjective, direct
acceptance by an individual of a notion, a theorem, or a solution…” (Fischbein, 1994, p.244),
and it is organized in tacit models that Fischbein (1987) describes as imperfect mediators
that lead to incorrect interpretations of the algorithm. Analogies play an important role in the
construction of models. They are a source of models and may occasionally be a source of
misconceptions (Fischbein, 1987).

At times, during algorithmic learning, a conflict takes place between the intuitive aspect and
the formal interpretation of the procedure. Thus, on an educational level, algorithmic error
could be predicted via this irrelevant interpretation of the procedure. “In this case, the
teacher has to identify the intuitive tendencies of the student and to try to explain their
sources” (Fischbein, 1999, p. 24). Likewise, Stavy and Tirosh (2000) stress the predictive
power of these irrelevant interpretations of the process.

In this spirit, Tirosh, Tsamir, and Hershkovitz (2008) asserted that many of the errors made
by students in subtraction can be explained by the influence of a number of intuitive rules.
Such an assertion is part of the Intuitive Rules Theory (Stavy and Tirosh, 1996, 2000;
Tsamir, 2005; Tirosh and Stavy, 1996, 1999), proposed to explain and predict inappropriate
responses to a wide range of mathematics and science tasks. In this theory, the authors
confirm that many students react by giving similar answers in a wide range of tasks that are
not conceptually related, although they so have one component or external trait in common.
From the analysis of these answers, they conclude that many of them can be explained by
the influence of three rules: ‘More A- more B’, ‘Same A- Same B’; ‘Everything can be divided
endlessly’. They consider these rules intuitive because students feel as if their explanations
were self-evident and sufficient (Stavy et al., 2006). They likewise possess attributes of
globality (the students tend to repeat them in different situations) and coerciveness, because
the alternatives are often excluded as unacceptable (Stavy et al., 2006).

Tirosh and Stavy (1999) report that students’ responses to a variety of mathematical
comparison tasks were influenced by the intuitive rule ‘Same A- Same B’ in tasks where ‘the
two objects or systems to be compared were equal in respect to one quality or quantity (A1 =
A2) but different in respect to another one (B1 = B2). In some of the tasks, the equality in
quantity. A was perceptually or directly given. In other cases, the equality in quantity A could
be logically derived. A common incorrect response to all these tasks, regardless of the
content domain, was B1= B2 because A1 = A2’ (Tirosh and Stavy, 1999, p. 62). They also
affirm that this rule could be activated by a perceptual or logical input. On this point, they
suggest that it could be innate and stress that it is reasonable to assume that children
generalize such experiences into a universal maxim: ‘Same A- Same B’, because this rule is
often applied in different situations within the school context. This fact would promote its
generalization. In light of this theory, we suggest that algorithmic reasoning is affected by
intuitive rules. Specifically, we believe that the rule ‘Same A- Same B’ plays an important
role in this affirmation. In this study we propose an explicit reference to this rule when we
analyse the incorrect generalizations made by the children regarding the concept of zero.

Other authors have informed of the intuitive component in algorithmic knowledge (Baroody,
1988; Gelman and Gallistel, 1978; Huttenlocher, et al., 1994; Resnick, 1987; Sander, 2001).
Sander (2001) agrees with Fischbein and believes that the interpretative aspects are
essential in the generation of errors in vertical multi-digit subtraction. Sander’s results
confirm that errors are generated by a negative analogue transfer mechanism that occurs in
educational environments whose sources are inadequate. He considers two sources that
support the “Remove and Distance” analogy, integrated in the conceptual schema that
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support the skill and used by children, either spontaneously or as the result of certain
learning situations. According to Sander, interpretations based on these sources initially give
rise to errors of a semantic nature. Subsequently, these errors influence procedural errors.

Previous ideas have led us to focus more on the process of mathematical knowledge
transfer and its possible role in the generation of errors in subtractions. Some authors such
as Brown and Clement, 1989; Clement, 1993; Duit, 1991; Fischbein, 1987; Gentner et al.,
2003; Thagard, 1992; Sander, 2001; VanLehn, 1986, 1990; Zook, 1991; Zook and DiVesta,
1991 have studied this kind of transfer. Hiebert and Lefevre (1986) believe that this process
facilitates the relation between conceptual and procedural knowledge. Fuson (1992), points
out that it is very common for teachers to rely on school textbooks when introducing
algorithms in mathematics classes. This may interfere with the children’s ability to make
generalisations. Likewise, VanLehn (1990) believes it is not only the examples given in the
text books which interfere with the generalisation of the subtraction algorithm process, but
also those offered by teachers or fellow students.

Consequently, the sources that feed the process of arithmetic knowledge transfer can be
induced from the learning context. According to Fischbein (1999) and Tirosh and Stavy
(1999), intuitions are sensitive to the influence of the context. If that is so, we should further
investigate the nature of the mathematic processes, methods, and language used in
algorithmic learning situations.

In this study, we have specifically focused on analyzing the influence of the semantic
perspective on the origin of errors within the subtraction algorithm teaching and learning
context, keeping in mind the theoretical contributions of Fischbein in particular.

In our research area, the results of leading studies define certain fundamental theoretical
aspects, which constitute the central nucleus in the generation of errors made in
subtractions. These are linked to the following affirmations: (I) the relationship between
intuition and algorithmic knowledge is essential to study the nature of the errors (Fischbein,
1987, 1993, 1994; Tirosh et al., 2008). (II) Algorithmic subtraction learning occurs through
inductive mechanisms, using examples (VanLehn and Brown, 1980), (VanLehn, 1986,
1990), via a learning process of analogy (Sander, 2001; VanLehn, 1986, 1990). (III) Errors
arise from an investigative or heuristic process (VanLehn, 1990) during the resolution of a
new problem and (IV) The nature of the error is related to the conceptual acquisition
occurring in the first phase of the learning process and therefore, the mistake is due to a lack
of understanding of the meaning of 0 and of the positional place-value concepts (Cockburn
and Parslow-Williams, 2008; Fiori and Zuccheri, 2005; Fuson 1986, 1992; Fuson and Briars,
1990; Kamii, 1985; Resnick and Omanson 1987; López and Sánchez, 2007, 2009).

This last assertion is rooted in the contributions of the previously mentioned authors, who
suggest that not all the theory should rest on the procedural component. Therefore,
subtraction algorithm learning, as well as requiring a certain aptitude for logical reasoning, as
highlighted by Piaget and Szeminska (1941), and a certain level of development, also
involves comprehension of the procedure, and these authors propose a set of basic
principles closely related to the acquisition of base-10 structures, on which the
aforementioned comprehension is based. These are; (i) Additive composition of quantities,
(ii) Conventions of decimal place value notation, (iii) Calculation through partitioning and (iv)
Recomposition and conservation of the minuend quantity (Resnick and Omanson, 1987, p.
49).
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These authors believe that the cause of errors does not reside in syntactic or procedural
aspects, which are considered superficial. They would, in short, be the result of violating one
or more of the previously mentioned principles which are a basic element in the conceptual
structure of the procedure.

The conceptual structures are very well described by Resnick (1983), who differentiates
between relational knowledge, made up of proto-quantitative structures, and
representational knowledge, which includes knowledge of verbal counting. The relational
structures are: (i) Comparison, through which children have at their disposal a series of
terms such as more, less, smaller than, (ii) Increase – reduction, which allows them to
determine changes in quantity and (iii) Part – Whole, which allows the whole to be divided
into smaller parts.

The progressive integration of both types of knowledge facilitates the execution of the
algorithms.

From our point of view, the intuitive component defined by Fischbein is related to the
interpretations that children make of the conceptual and relational structures defined by
Resnick, and it is right at this point where we locate the interaction between the intuitive, the
formal and the procedural components in the processes of understanding the subtraction
algorithm.

VanLehn (1982, 1990), considers an error to be an invention resulting from an investigation
process carried out during the resolution of the subtraction, although we would be dealing
with a heuristic strategy, influenced by conceptual knowledge and the child’s primary intuitive
interpretations of the algorithm.

The intuitive interpretations of algorithmic practice or performance when starting the
subtraction learning process are especially relevant when they are applied to different
situations (Ohlsson and Rees, 1991) through negative analogue transfer mechanisms
(Fischbein, 1987; Sander, 2001). In Fischbein’s words: “analogies may be the source of
misconceptions when correspondences are assumed which in fact are not parts of the
structural mapping between the two systems. Often such misconceptions will arise through
an incompatibility between a formal property of the system being modelled and an intuitive
property of the modelling representation, which is consciously or tacitly guiding the cognitive
processes” (Fischbein, 1987, p. 142).

According to Gentner et al., (1997), the analogue transfer process would consist of a
structural alignment between two mental representations with the aim of finding the
maximum consistency between them. From our point of view, this process would facilitate
the generation of errors during algorithmic learning, since they can serve to guide intuitive
interpretation. This is because intuitive conceptual interpretations during the first stage of
instruction play an important role in attempts to adapt previously known algorithmic
procedures to solving new problems or novel situations.

We believe that instruction intervenes in the generation of errors via processes acquired by
memorization, which are highly influenced by teaching that does not encourage
understanding of conceptual knowledge (Baroody, 1988; Fuson, 1986, 1992; Kamii, 1985;
Resnick, 1982, 1983; Resnick and Omanson, 1987). Thus, interaction processes determine
the choice of resources that constitute the understanding of the skill (Bromme and
Steinbring, 1994).
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That is to say, like Fischbein (1987) and Sander (2001), we maintain that the sources of
analogue transfer used by children are not appropriate. In other words, the conduct
displayed by children is characterised by a lack of understanding of the formal component in
multi-digit subtraction, and the intuitive interpretation of this formal-procedural component
(Fischbein, 1999).

It generates errors of a semantic nature, which are based on an analogue transfer process,
in the first stage of instruction. The child carries out one by one all the elements that form the
set of arithmetic skills based on the superficial features of the examples used during
instruction. These are transferred to new subtractions whose structures are different from the
ones which were initially solved and which were useful as example prototypes during
instruction.

However, by looking at the conceptual background in greater depth, in the present paper we
report on the results obtained with regard to the influence of children’s intuitive
interpretations on the mechanisms underlying the operation and the procedure as such. With
this aim, we take as referents, on the one hand, the examples used in the instruction
(VanLehn, 1986, 1990), memorized as routines in the first learning phase, and on the other
hand, a series of structural schemata or action schemas (Fischbein, 1999), that can be
found at the root of the execution of arithmetic skills and are useful for establishing relations
between the quantities that make up the operation, allowing the child to develop as they
solve the problem.

These structural schemata are; ‘Taking one part of the whole’ and ‘Covering a distance´’
(Resnick, 1983), and “intuitions depend on a structural schema…Intuitions may, sometimes,
be related to adequate schemata, but, sometimes, they may be manipulated by non-
adequate schemata….” (Fischbein, 1999, p. 44). The child’s interpretations formed in these
non-adequate structural schemata, and the vocabulary that form part of these, constitute the
resources that generate analogue transfer. This being so, the reason why instruction
promotes these resources is that sometimes it does not develop the understanding of the
algorithmic principles and ignores the intuitive interpretations and beliefs of the students.

Finally, the aim of the present paper is to broaden the theoretical framework and
demonstrate how, when children start to learn, they develop intuitive interpretations of the
procedure based on a series of concepts or specific vocabulary organised within the
conceptual field of subtraction.

In summary, a basic assumption, which will be described in the present paper, is that the
child’s intuitive interpretations formed in structural schemata, the vocabulary that forms part
of these, and the semantic interpretation of zero constitute the base for sources that
generate analogue transfer and they affect the origin of the subtraction error .

2. MATERIALS AND METHODS

2.1 Introduction

In order to confirm the aforementioned premises, we designed a 'pilot study' as part of a
wider research framework. The main aim of this pilot study was to analyse the semantic
nature of errors in subtractions with borrowings.
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Before describing this pilot study, we set out some aims and significant results, which are
useful as referents for the study, and that form part of the wider research subject.

The general aims of the research that this pilot study is linked to are the following; (i) To
confirm the level of acquisition of the set of basic principles defined by Resnick and
Omanson (1987), (ii) To study the generation of systematic errors in our educational context
and understand the typology of these errors.

Some of the most significant results of this research are those obtained in relation to
knowledge of Base-10. A sample of 357 primary school students between the ages of 7 and
12 were assessed with a multiple choice test made up of 10 items through which we aimed
to authenticate if the children had acquired the basic concepts necessary to comprehend the
subtraction process.

We obtained a very low percentage of right answers: 44.5% of the sample (N=357). Only
4.3% of the test population worked with knowledge related to place-value of the digits within
the numbers. Control of the natural series of the digit, on the other hand, only yielded 21.5%
of the correct answers (López and Sánchez, 2007, 2009).

Regarding the generation of systematic errors *1, we found higher percentages than in
previous studies (VanLehn, 1990). Thus, 55.55% of students in the third grade (aged 8-9)
showed systematic errors, 52.05% in the fourth grade (aged 9-10) and 26.66 % in the fifth
grade (10-11).

Logically, these results led us to investigate the semantic aspects that configure conceptual
knowledge and its development in the classroom in the first phase of algorithmic acquisition.
This phase corresponds to the second and third grade of primary education in our country
(children aged 7-9). With that in mind we developed the pilot study described below.

2.2 Objectives of the Pilot Study

i. To analyse the semantic nature of errors in subtraction with borrowing.
ii. To study the intuitive tendencies related to the subtraction process
iii. To identify the structural schemata on which the intuitive tendencies are based and

to analyse how the language used influences these structures.

2.3 Context of the Study

The context in which we carried out our research is located in a western province of Spain.
The population used in the sample is made up of four schools. For the pilot study described
in this paper, we took as a reference one of the schools, which we have named “centre 2”.
This school is located in the mountainous area of the province of Salamanca, which is
undergoing growing depopulation and has a low birth rate. The school fulfils a particular
characteristic due to the small number of children in the school, only 18 in total. These
children are taught by the same teacher from the beginning of their schooling, which is when
conceptual structures for multi-digit numbers are configured.

From the interviews carried out with the teacher, we concluded that the methodology used in
the classroom was primarily textbook based. The subtraction algorithm learning process is
carried out through a sequence of lessons which cover the 2nd and 3rd grades of primary
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education, that is to say, children aged from 7 to 9. A new aspect related to the acquisition of
the procedure is introduced into each lesson: two-column subtraction, three-column
subtraction and borrowing…, and practice exercises taken from the book or proposed by the
teacher are done as well. Generally, the topics are taken from textbooks. That is to say, the
teacher follows a traditional approach in which the algorithm is introduced in a directed way.
Moreover, the research findings in the cross-sectional study of the errors made in this school
revealed that these errors were mainly semantic in origin. Nonetheless, we wished to study
their origins in greater depth as well as their possible relation to the context of instruction
these children had received.

2.4 Subjects

A sample of 18 primary school students between the ages of 7 and 12 were tested with the
VanLehn 20 subtractions test (VanLehn 1990, p. 170). This test is comprised of 20
multicolumn subtractions, seventeen of which are subtractions with borrowings. According to
the author, this test has been carefully designed in order to obtain different errors
(VanLehn1990, p. 193).

For a pilot study we called for all students from 2nd, 3rd, and 4th, (N=9, aged 7-10) grades
of primary school, which made up school sample (2). These children had been instructed in
algorithms from the outset by the same teacher, due to the geographic-administrative
characteristics previously mentioned. All the children from the 2nd, 3rd and 4th grade (N=9)
were tested with the test consisting of the 20 VanLehn subtractions, (VanLehn 1990, p. 170)
and gave a spoken explanation of the way in which they resolved each subtraction. The nine
children were chosen for three reasons: (i) they were in the academic grades where the first
phase of subtraction with borrowings is taught, which is where the greatest number of errors
of a semantic nature can be found, and (ii) they had been taught by the same teacher
throughout their schooling.

This last reason was to provide us with some type of relation between linguistic knowledge,
encouraged via instruction, and the development of the arithmetic skill to be established.

We obtained a considerable amount of verbal reports which were recorded and transcribed
on a registration form with the instruments stated below.

2.5 Instruments

Taking as a reference the contribution of Olhson and Langley (1988, p. 47) in relation to the
Newell and Simon (1972) diagnostic method, we used a transcription of verbal recording
protocol whereby we transcribed the results of the verbal reports of the children from each of
the 20 subtractions in the VanLehn (1990) test, which allowed us to describe the cognitive
abilities and specific vocabulary entailed in solving the algorithm. The dimensions of the
transcription protocol were:

- Part A: Identification Data: Code, age, centre, Start and finish time.
- Part B: description of cognitive conduct in the resolution of subtractions:

Verbalization, Correct/error and type, Sequence of actions, Observations.

An example of Part B of the protocol is included below, where we can appreciate the
“Smaller – from-larger” error transcription process in one of the students.
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Table I. Example of “Smaller – from-larger” error transcription in the protocol

Subtraction Verbal
Reports

Correct/type
of error

Sequence of
actions

Observations

1564 -887=
1323

Subtraction
no. 10: Four
minus seven,
three. Six
minus eight,
two. Five
minus eight,
three. One
minus
nothing, one.

Error:
“Smaller
from larger”

Four minus
seven
Writes result
Next column
Six minus eight
Writes result
Next column
Five minus eight
Writes result
Next column
One minus
nothing
Writes result

Structural
schema: Less
than.
Nothing
concept =
blank space

2.6 Procedure

We employed a qualitative analysis for the study of the data obtained via the verbal reports.
This methodology allowed us to study the natural language used in the process of solving
the subtractions. We used technological means to make audio recordings, which were later
transcribed in text format using the Sound Scriber computer programme.

In order to reduce the large volume of data, we drew up an ordered collection of information,
presented in an operative and extensive way which would allow questions arising from the
research to be resolved. We transformed the data obtained from the verbalisations with the
coding function of the Matrix in the computer program Nud*ist 4.0. (example in Appendix 1),
a reference for qualitative evaluation, and this allowed us to determine the semantic
conceptualisation of zero and whether or not transfer sources, defined by Sander (2001) as
“Distance and Remove”, existed in the texts and which of these were most used by the
children in the test.

In this process of reducing data, the strategy used was to establish categories
(Metacategories: “Distance and Remove” and “Semantic Conceptualisation of Zero”). In
order to analyse the number of text fragments included in each metacategory, we used
enumeration units found, each unit being equivalent to a line of text. We assigned verbal
codes to the different fragments of text which gave information on the metacategory contents
with the aim of verifying the categorisation process carried out in the text. These codes were
made up of the expressions used by the children when solving the procedure that forms part
of the structural schemata on which the arithmetic skill is based.

Below is an example of the categories which have been analysed in each of the
metacategories:
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Table II. Example of categories and codes

Metacategories
Metacategory:
Distance

Metacategory:
Remove

Metacategory:
Conceptualisation of 0

Codes

Started with/finished with
Counted up to
I went from…to
From…to

Less than
Take from
I take
I had I took
I subtracted from

There is nothing in the
zero
Zero has nothing
Zero minus nothing
Zero is worth nothing
Zero = nothing

3. RESULTS

3.1 Analysis of the First Period of Subtraction Algorithm Acquisition

Before applying the previously defined instruments, using VanLehn’s 20 subtraction test
(1990) we checked what the frequency and typology of the most common errors were in the
first phase of learning using a sample of 357 primary school students between the ages of 7
and 12. To do this we took as referents the 2nd and 3rd grade of Primary Education forming
part of this sample (aged 7-9) (N=135). The results are presented in Table III, which shows
the dominant errors in frequencies and percentages according to the terminology used by
VanLehn (1990). We can see that the error categories Smaller- from-larger and Diff, 0-N=N
have a very high number of occurrences; although the analysis of higher years at school
shows that these disappear.

Table III. Distribution (in %) of occurrences of 8 errors with the greatest frequency in
the 2nd and 3rd grade (aged 7-9). N= 135.

Error type Example*2
2nd  Grade(N = 63) 3rd Grade (N = 72)

Number of
occurrences % Number of

occurrences %

Smaller-from-larger 81-38=57 119 18.25 20 5.18
Fact errors 7-3=5 44 6.75 35 9.07
Borrow-no-
decrement 64-44=28 81 12.42 46 11.92
Diff, 0-N=N 80-27=67 63 9.66 30 7.77
Forget-borrow-
over-blank 347-9=348 41 6.29 11 2.85

1-1=1-after-borrow 812-
518=314 38 5.83 18 4.66

Borrow-from-zero-
is-ten

604-
235=479 19 2.91 39 10.10

Diff, 0-N=0 40-21=20 16 2.45 6 1.56
Other errors 231 35.43 181 46.89
Total 652 100 386 100

Table IV shows the same analysis as that used for Table III, but this time the analysis was
performed on the 2nd and 3rd grade (aged 7-9) students of the sample a (N=9) taken for the
pilot study described here.



British Journal of Educational Research, 2(1): 20-41, 2012

30

Table IV. Distribution (in %) of occurrences of 8 errors with the greatest frequency in
the 2nd and 3rd grade (aged 7-9) in school (2), where the pilot study was carried out

Error type Example*2
2nd Grade (N = 2) 3rd Grade (N = 4)

Number of
occurrences % Number of

occurrences %

Smaller-from-
larger 81-38=57 0 0 30 43.47
Fact errors 7-3=5 1 3.22 0 0
Borrow-no-
decrement 64-44=28 4 12.90 0 0
Diff, 0-N=N 80-27=67 0 0 9 13.04
Forget-borrow-
over-blank 347-9=348 0 0 0 0
1-1=1-after-
borrow

812-
518=314 0 0 0 0

Borrow-from-
zero-is-ten

604-
235=479 1 3.22 2 2.89

Diff, 0-N=0 40-21=20 5 16.12 6 8.69
Other errors 20 64.51 22 31.88
Total 31 100 69 100

The results shown in Tables III and IV highlight the difference in frequency of the
appearance of errors (Smaller- from-larger, Diff, 0-N=N and Diff, 0-N=0) between the two
school grades (Table III). Likewise, in Table IV we show the frequency of appearance of
errors such as Smaller-from-larger, Diff, 0-N=N y Diff, 0-N=0 in School (2) where out study
was carried out. At this school we found a tendency for these errors to increase in 3rd grade.
The “Other errors” category in Table IV includes errors such as: Borrow-across-zero (904-
7=807), 1-1=0-after-borrow (812-518=314). The causes behind these errors will be
discussed in the next section.

We can affirm that the errors are semantic in nature. This being the case, we believe that
these first errors are not a result of an “impasse” (VanLehn 1982, 1990), but a consequence
of the first intuitive interpretation formed in a non-adequate structural schemata of the
procedure (Fischbein, 1987, 1994, 1999; Sander, 2001) and based on an inadequate
understanding of the conceptual domain or formal knowledge of the algorithm. The general
characteristics of the errors revolve around conducts that systematically have a bearing on
situations with a higher level of cognitive difficulty and complexity in the sphere of the
conceptual understanding of the procedure. This fact will be projected when executing the
skill, giving rise to violations of the rules that govern the process.

Generally specking, as an effect of age and instruction an adequate acquisition of all the
structural schemata of arithmetic skills is progressively acquired, and does away with these
false conceptions, causing some of these errors to disappear by the 4th year of primary
education. This idea allows us to confirm the existence of conceptual or semantic errors.

3.2 Intuitive Interpretations in the First Phase of Learning the Algorithm

As previously stated in section 2.6, in order to analyse the verbal reports, we identified
various expressions (Sander, 2001) that children use in the resolution of the algorithm



British Journal of Educational Research, 2(1): 20-41, 2012

31

related to the structural schemata : ‘taking one part of the whole’ and ‘going from one initial
situation to another final one’. We added the semantic interpretation of 0 as a collection void
of elements (Baroody, 1988). These structural schemata are very well described by Resnick
(1983). In order to analyse the arithmetic knowledge of the selected children, we took into
account relational schemata: (i) Comparison, by which children have at their disposal a
series of terms such as more, less, smaller than, (ii) Increase – reduction, which allows them
to determine changes in quantity and (iii) Part – Whole, which allows the whole to be divided
into smaller parts.

The specific vocabulary of these schemata influences the child's initial interpretations of the
subtraction procedure.

In order to obtain information on these interpretations, a total of 329 units of text were
analysed, each unit corresponding to a line of text taken from the children’s verbalisations
during the execution of the 20 subtractions. We analysed, in total, the verbal reports of the
nine children selected from school (2) for 180 subtractionsFor the data analysis we used
Frequency Tables and commentary of the textual units in each of the three established
meta-categories: ‘Distance, Remove and Conceptualisation of the Zero’. In the data shown
in Table V, below, we have set out the expressions or categories which we identified most
frequently in the text and which we can meta-categorize into two sources of analogue
transfer, based on the transfer sources that Sander (2001) defined as ‘Distance and
Remove’. In Table V, what Resnick (1983) defines as the relational knowledge of the
subjects is fundamentally limited in our sample to the meta-category ‘Moving’ within the
semantic categories ‘Less than’ (53.49%), ‘Take’(20.12%) and finally ‘from…to’ (19.14%).
That is to say, if we add the percentages of the meta-category ‘Remove' which is adapted to
the structural schemata ‘taking a part of the whole’, we could conclude that it is the most
common analogue transfer source in the sample.

If we advance a further step, however, and analyse what conceptual interpretation the
children have of zero, we can see with greater clarity that the semantic or conceptual
interpretation together with the interpretation of the procedure as “taking one part of the
whole” has a significant influence on the production of errors.

3.3 Example of the Intuitive Rule ‘Same A- Same B’

From the analysis of the verbalisations and the results we offered in the previous table, we
have deduced that the concept ‘nothing’ is intimately associated with zero in the sample.
According to Haylock and Cockbourn (2003) this fixation on the idea that zero is nothing is a
consequence of the emphasis on the cardinal aspect of number. Together with Kulm, (1985
cited by Baroody, 1988), we believe that such a coincidence in the verbalisations of all the
children in the sample must be due to the fact that in the initial learning of zero as an intuitive
estimation of a void set of elements the children use the example: ‘zero is nothing’ or ‘zero
has nothing’, which the children memorized without completely understanding it, and applied
it, through the analogue transfer mechanism, to all the zeros of the algorithm we evaluated.
Thus, the intuitive estimation of zero depends on a structural schema that is adequate only
for a set void of elements, but not adequate when zero is a positional holder. This may
constitute an explicit example of the intuitive rule ‘Same A- Same B’ described by Tsamir
(2005). We suggest that the incorrect generalisation of the initial intuitive estimation of zero
as a set void of elements is analogous to the incorrect generalisation of zero as lacking
place-value in base-10.
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Table V. Distribution (in %) of occurrences of the meta/category Distance and Removing (N=9) Subtractions analysed = 180.

Table VI. Distribution (in %) of appearance of the meta-category: Conceptualisation of 0. Semantic interpretation of zero,
(n=9). Subtractions analysed = 180.

Meta-category: Conceptualisation of 0
Categories Number of

occurrences
% Total units of

text analysed

There is nothing
in the zero

1 0.30 329

Zero has nothing 1 0.30 329
Zero minus nothing 8 2.40 329
Zero is worth nothing 2 0.61 329
Zero = nothing 199 60.48 329

Meta-category: Distance Meta-category: Remove
Categories Number of

occurrences
% Total

units
of text

Categories Number of
occurrences

% Total units
of text

analysed
Started
with/finished
with

1 0.30 329 Less than 176 53.49 329

Counted up
to

1 0.30 329 Take from 12 3.65 329

I went
from…to

1 0.30 329 I take 66 20.12 329

From…to 63 19.14 329 I had I took 15 4.57 329

I
subtracted

from

4 1.21 329
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This can be seen in the examples of some of the subtractions shown below:

Subtraction no. 17: (702-108=604, here I borrowed one and from eight to twelve I got four;
here I didn’t borrow anything; because it was zero and zero and zero, gave me zero; I
borrowed one from seven; leaving me with six).
Subtraction no.14: (102-39=137, two minus nine seven, nothing minus three, one minus
nothing one).

Subtraction no.14: (102-39=137, two minus nine seven, zero minus three, one minus nothing
one).

3.4 Analysis of the Erroneous Concepts Developed Via the Transfer Process

In the above examples we can see that the student’s answers possessed attributes that
were self-evident, sufficient and global, since the students tended to repeat them in different
situations, and coercive; because the alternatives are often excluded as unacceptable, as
indicated by Stavy et al., (2006).

A mechanical use of analogy therefore occurs, through the student’s inability to apply
concepts from an analogous domain to a designated domain (Brown and Clement, 1989;
Clement, 1993; Duit, 1991; Thagard, 1992; Zook, 1991; Zook and Digesta, 1991).

The erroneous concepts developed via the transfer process, embodied in the transfer source
“take one part of the whole”, of this first conceptual intuitive interpretation promotes the use
of the concept “nothing” with the same semantic meaning in all situations. This situation can
be difficult to rectify and in our case culminates in the generation of algorithmic errors. That
is to say, during the instruction of these children, the subtraction algorithm had been
associated with a non-significant learning of the place-value of the figures and the rule of
transforming zero in subtractions with borrowings. These children consider zero to be a void
set of elements and lacking place-value in base-10. This characteristic has a negative
influence on the execution of the procedure by disarranging or disturbing the rules that
govern the algorithmic process and generating errors, which as we will see below are of a
semantic nature.

We are convinced that the children from our sample learnt the algorithm without
understanding its structural principles, limiting themselves to mechanically following the rules
set out by the teacher (Baroody and Ginsburg, 1986). They interpret multi-digit numbers as
single-digit numbers. There is, therefore, a lack of understanding of place–value concepts
(Fuson, 1992; Kamii, 1985).The teaching methodology used would contribute to certain
errors being produced throughout the whole stage of Primary Education because the teacher
has not identified the intuitive interpretations of the student, or tried to explain their sources
(Fischbein, 1999).

These errors would be registered within the transfer source "take from", and would therefore
be the result of the child’s conceptual background from which the erroneous interpretation of
the procedure was formed.

In Table VII shown below, we can see the conceptual interpretation of the most common
transfer source in the development of this type of error.
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Table VII. Distribution (in %) of the occurrences of the most common errors in school
(2). School grades analysed 2nd, 3rd, 4th, 5th, and 6th. Children aged 7-12.

(N=18). Subtractions analysed = 360

If we carefully analyse the conduct involved in the “Smaller-from-larger” error, it can be seen
that the child has basically internalized the first part of the procedure as “take from”, but has
not understood the directionality of the subtraction (Fuson, 1986, 1990, 1992). The child
thinks that the “whole” is always the largest part; and this is an intuitive interpretation. Hence,
they compare the digits unaware that the “whole” is in the subtrahend. So, they compare and
subtract the minuend from the subtrahend and disregard the rule about the petition of
“loans”.

According to Fischbein (1994), a conflict takes place between formal, intuitive and
algorithmic components. This action means that all the principles that govern the process
are violated, principles such as the place-value of digits, the conservation of the minuend,
and so on. The result denotes a lack of conceptual knowledge, which has a bearing on the
lack of corrective revision within the procedure (Ohlsson and Rees, 1991). This in turn is
facilitated by this kind of knowledge. Because of this, the child is unable to act in an
adequate manner in this discipline and resorts to the application of the heuristic for linear
substitution (Gentner, 1983, 1997), or better stated, of an analogy based on intuitive
interpretations of inadequate structural schemata.

The impoverished quality of conceptual knowledge present in this conduct is fundamentally
associated with the acquisition of basic structures that constitute the numeric series and of
rules that define the positional and grouping system.

Error % Interpretation from the Transfer Source: Moving
Smaller-from-larger
(e.g. 81-38=57)

26.60 When one takes or moves one part of the whole, the
part is always smaller than the whole*3

1-1=0-after-borrow
(e.g. 812-518=314)

15.23 If from one unit a unit is taken the result is 0. We
believe the child takes the borrowing from the
minuend and is therefore left with 0 and 0-N = 0. We
are faced with the same situation as in error 0-N = 0.
Because as these children conceive it, zero is
nothing and therefore nothing can be taken from it. It
would basically be the same conduct as in the
following one.

Diff,  0-N=0
(e.g. 40-21 = 20)

12.38 It is impossible to take some part of the zero which
for these children is made up of a set void of
elements. Therefore, they opt for the interpretation of
the error Smaller-from-larger. When one part of the
whole is taken or moved, the part is always smaller
than the whole.

Diff, 0-N=N
(e.g. 80-27=67)

10.47 As zero is worth nothing, nothing can be taken or
borrowed from it.

Borrow-across-zero
(e.g. 904-237=577)

8.57 As zero is worth nothing, one cannot borrow across
from it.

Other errors 26.75
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Moreover, we believe that these errors are generated by the incorrect option of
extrapolation, produced by an analogue transfer (Fischbein, 1987; Sander, 2001).
Specifically in the bug “smaller –from-larger”, the child carries out a linear extrapolation of a
standard rule “take one part of the whole”, which is transferred from a simple subtraction to a
multicolumn subtraction with borrowing. That is to say, the child takes the rule learnt during
instruction, which was generalized through examples, joint and isolated practice exercises
and converted into a high level pattern, and transfers the rule to fit a new situation in which
he/she has possibly been trained but not in a comprehensive manner. This characteristic
significantly hinders the learning of the procedure or the acquisition of the whole pattern of
rules governing the skill of subtraction with borrowing. As such, the student perceives the
whole process as an ‘isolated chain of conducts’ in the same way as a single column simple
subtraction, unable to understand the hierarchically organised structures that prevail in the
process of multicolumn subtraction with borrowing. The process of generation and
production of this error prevails in this characteristic. We can also see that having deficient
knowledge of the conceptual basis of zero, which is associated with a lack of “place-value”
or “positional holder” (Resnick, 1987), leads to application of the incorrect reasoning that
“one cannot subtract anything from nothing”. We acknowledge the influence of language in
the semantic understanding of zero and the intuitive interpretations in the first phase of
learning. The children in the test sample use the word “nothing” with various semantic
meanings.

4. CONCLUSION

According to Fischbein and Tirosh, Tsamir and Hershkovitz, students’ intuitive ideas
manipulate their formal reasoning and algorithmic procedures. In the study we present, the
intuitive tendencies related to the subtraction process shown by students in the lower grades
of Primary Education have been thoroughly examined. To explain these intuitions we have
identified the structural schemata on which they are based and analysed the influence of the
language used on such structures.

The research findings show that errors involve conducts that systematically have a bearing
on the more complex cognitive phases of the process and are directly related to the
comprehension of concepts, essential to the significant learning of arithmetic, basically in the
field of principles governing the Base - 10 system (Fuson, 1992; Resnick, 1987). We have
also demonstrated how intuitions children draw from the experiment interact with the formal
knowledge of the algorithm. That is to say, the results obtained in the research confirm some
of the contributions of Fischbein’s theory and the Intuitive Rules Theory of Stavy and Tirosh
(1996, 2000); Tsamir, (2005); Tirosh and Stavy (1996, 1999). One of the most relevant
questions analysed is the relation between formal, procedural and intuitive knowledge in the
subtraction algorithm.

We can also see the difficulty involved in the conceptual understanding of zero and the
influence of the language used in the teaching process on this type comprehension. We
believe that the vocabulary or specific linguistic understanding of the structural schemata
which organize the skill is decisive in the generation of errors (see the results in Tables V
and VI). As a result, we analysed the intuitive estimation of zero, which depends on a
structural schema adequate only for a void set of elements, but inadequate when zero is a
positional holder. This may constitute an explicit example of the intuitive rule ‘Same A- Same
B’ described by Tsamir (2005). Thus, we have identified the structural schemata on which
intuitions depend. This issue is of undoubted importance in the field of didactic procedures.
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We have also verified that when children start to learn they construct intuitive interpretations
of the practice or performance of algorithms. Going into more detail along this line, we have
shown that these intuitive interpretations play an important role in the generation of errors
and that they possess the attributes of being self-evident, sufficient, global and coercive.

We have shown, however, that the vocabulary inscribed in the structural schemata that
support the execution of the skill is important in learning transfer or generalisation.

As such, we believe that by simplifying the acquisition model into two parts (the acquisition
of the process and the syntactic interpretation of the same), VanLehn underestimated to a
certain degree the formal and intuitive knowledge on which the procedural skill is based in
the first stage of learning. It is this knowledge, as we understand it, which holds the whole
conceptual framework that has a determining influence as a channelling element of the rules
of the altered process. We are therefore faced with two types of errors: (I) those which at
their genesis have as a matrix the conceptual or semantic influence closely related to
inadequate and memory-based instruction and which do not take into account the possible
interaction between formal and intuitive knowledge; (II) those which are the result of having
generalized these erroneous procedures, which are internalized and become procedural
ones, erroneously modifying the algorithm’s syntax.

We consider that in the situations analysed, the conceptual background is not adequately
registered in the mind of the learner. An analogue transfer process takes place, which we
situate in the 4th grade of primary education, a level at which the conceptual teaching of the
algorithm reaches its culmination and which we highlight as a dividing line between errors of
a conceptual nature and those of a procedural nature.

In the present paper, we have shown that the interpretations and the resources used by the
children when solving the algorithm should be taken into consideration by the teacher in the
classroom because they have a decisive influence on the conceptual understanding of the
algorithm. During instruction, teachers should pay particular attention to the language used
in the teaching process, as well as to intuitive notions that children build during the learning
process of the algorithm, which, as we have seen, are crucial in the acquisition of the
structures that reinforce this competency.

To sum up, a basic assumption that we consider as influential in the origin of the subtraction
error is that the child’s intuitive interpretations formed in structural schemata, the vocabulary
that forms part of these, and the semantic interpretation of zero uphold the sources that
generate analogue transfer. It is important to consider its influence in order to improve the
algorithmic teaching processes.

NOTES

1. We consider a mistake to be systematic when it is made in a high number of frequencies
and throughout all the years.
2. Examples of errors taken from VanLehn, (1990 p.220-232).
3. Description of interpretation taken from (Sander 2001)
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APPENDIX

Example of analysis with NUD *.IST 4.0: Analysis of code: “Zero minus nothing”

Search.txt page: 1 2/18/5 14:29:19

Q.S.R. NUD.IST Power version, revision 4.0

PROJECT: 1, 2:29 pm, Feb 18, 2005.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++ Text search for 'cero menos nada'
+++ Searching document VOZ 1...

+++ Searching document VOZ 2...
32 RESTA 18: seis menos dos igual cuatro, cero menos cuatro igual

cero; CERO MENOS NADA igual cero; dos
35 menos dos, cero; CERO MENOS NADA cero; uno menos nada uno.
+++ 2 text units out of 37, = 5.4%
+++ Searching document VOZ 3...
49    se puede hacer, así que diez menos dos, de dos a 10, van ocho,

lo pongo y luego CERO MENOS NADA es cero, y
+++ 1 text unit out of 52, = 1.9%

+++ Searching document VOZ 4...
4 RESTA 4: cinco menos tres dos, CERO MENOS NADA cero,

tres menos nada tres, ocho menos nada ocho.
20 RESTA 19: dos menos cuatro dos, uno menos uno cero, cero

menos dos dos, CERO MENOS NADA cero, uno
22 RESTA 20: uno menos tres dos, cero menos cuatro cuatro, CERO

MENOS NADA cero, ocho menos nada, ocho
+++ 3 text units out of 22, = 14%

+++ Searching document VOZ 5...
+++ Searching document VOZ 6...
+++ Searching document VOZ 7...

+++ Searching document VOZ 8...
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7      RESTA 4: cinco menos tres me ha dado dos, y CERO MENOS
NADA cero, tres menos nada tres y ocho menos nada

+++ 1 text unit out of 46, = 2.2%

+++ Searching document VOZ 9...
5      RESTA 4: cinco menos tres me ha dado dos, y CERO MENOS

NADA cero, tres menos nada tres y ocho menos nada
+++ 1 text unit out of 31, = 3.2%

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++ Results of text search for 'cero menos nada':
++ Total number of text units found = 8
++ Finds in 5 documents out of 9 online documents, = 56%.
++ The online documents with finds have a total of 188 text units, so text units found in these
documents = 4.3%.
++ The selected online documents have a total of 329 text units, so text units found in these
documents = 2.4%.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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