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Abstract
In this paper, a ferroelectric structure consisting of barium stannate titanate piezoelectric ceramic
is used for mathematical modeling. The study of the dynamics of the structure requires the poling
process that makes the ceramic active. This may be explained by the time-dependent nonlinear
polarization behavior. The model results in a nonlinear second order ordinary differential equation
of one degree of freedom. Analytical exact solutions have been obtained for three regimes
following the specific value of the damping parameter. Numerical simulations of these solutions by
optimization with Matlab package showed excellent agreement in comparison with measurements
and a mean square error of order of 10−5 is obtained.
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1 INTRODUCTION

The knowledge of the following physical
phenomena called piezoelectricity, pyroelectricity,
and ferroelectricity goes back over a hundred
years. In 1917, Just Hauy first observed
qualitatively electrical phenomenon resulting
from the action of a mechanical stress on some
crystals. In 1880, theoretical and experimental
study of this phenomena was undertaken by
the brothers Pierre and Jacques Curie who
are credited with the discovery of the direct
piezoelectric effect [1]. The following year, the
reverse piezoelectric effect was theoretically
stated by Lipman, in the same year, Pierre and
Jacques Curie checked successfully. This inverse
effect is manifested by a mechanical deformation
caused by application of electric field. Thus the
first industrial applications were made for the
detection of ultrasonic waves in the first part of
the last century. Since then progress is constantly
made. Then, the first piezoelectrity materials
were discovered, the most known is barium
titanate ceramics. The effects of the piezoelectric
can only be observed on insulating body. In
power applications, the ceramic running high
stresses are characterized by a phenomena of
non-linear behavior. To understand the origin of
nonlinearities, it must be remembered that the
existence of a piezoelectric effect in ceramics
is due to a non-linear polarization process.
This is justified by the fact that the areas of
the structure that were referred during the
polarization process are under high mechanical
or electrical stresses tend to resume their original
direction, these shifts being irreversible and
appearing in a precise order. Upon application
of an electric field to a ferroelectric material,
the molecules or atoms of which it consists
are deformed such that the centroids positive
and negative charges that make up no longer
coincident. In spite of its drawback of low
Curie temperature, (BaTiO3)-based pizoelectric
materials can be considered as an excellent
model system for exploring the physics of
piezoelectric materials [2]. Barium titanate
(BaTiO3) is the most common ferroelectric

oxide in the perovskite ABO3 structure, which
is used as various electronic devices such as
capacitors, thermistors, transducers and non
volatil memories in semiconductor industries
because of its dielectric and ferroelectric
properties. The electric and dielectric properties
can be modified [3] by doping with various
isovalent cations on both A (Ba) and B(Ti)
sites (see [3] and references therein). SnO2

was doped into (BaTiO3) to form barium
titanate stannate (BaxT i1−xSnxO3), short for
BTS. Study of the pyroelectric behavior of
(BaxT i1−xSnxO3) piezo-ceramics [4] showed
the thermal square wave method single-
frequency applied to samples with a tin gradient
of 0.075 ≤ x ≤ 0.15. As a result, because of
the polarization dependence of the piezoelectric
coefficient the technique used enables the
evaluation of the impact of ceramic fabrication
on the expected piezoelectric response [4]. In
this paper x = 0.15 is used which corresponds
to BaTi0.85Sn0.15O3 or BTS15. This is a binary
solid solution system composed of ferroelectric
barium titanate and non-ferroelectric barium
stannate. Both of them are of perovskite
structures [3]. In [5] advancements a made and
are favorable for pyroelectric device applications.
The authors studied porous BaSn0.05T i0.95O3

(BTS 5) ceramics prepared by sintering compacts
consisting of BTS and Poly as pore former.
The important result that has been revealed is
dielectric constant decreases and loss increases
with porosity. The main applications resulting
from ferroelectric materials, are : the realization
of high dielectric permittivity capacitors, the
realization of piezoelectric sensors and ultrasonic
generators using polarized poly crystalline
samples, the provision dielectric amplifiers and
modulators, the realization of thermoelectric
energy converters, the realization of DRAM
(Dynamic Random Access Memories) and
NVFeRAM (Non Volatile Random Access
Memories ferroelectric) [6]. One example of
these materials is ceramics based on barium
titanate stannate solid solution, which is widely
used in piezoelectric actuators and microsensors,
tunable microwave devices, and thermistors.
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Practical applications require piezoelectric
ceramics with not only uniform but also gradient
chemical composition, ensuring a nonuniform
distribution of dielectric, piezoelectric, and other
physical properties in ceramic samples [7].

A major research activity for half a century
was dedicated to perovskite materials having
either type of structure properties, ferroelectric
and piezoelectric or electrostrictive properties
in a view of applications in electromechanical
or ultrasonic devices [7]. In this domain, the
majority of the work relates to lead-based
perovskite. But in recent years, intense research
has been conducted to study lead-free materials.
In this paper, the propagation of electromagnetic
wave in a structure consisting in a nonlinear
ferroelectric multilayer structures is studied.
These materials are characterized by the
existence of spontaneous polarization and a
demonstrated reorientation of the polarization [8].
A ferroelectric material presents in the absence
of external electric field, a polarization which
can be reversed by the application of a electric
field that exceeds a critical value called coercive
field. Beyond this value all the material will be
intrinsic dipoles preferentially oriented in the
direction polarization. Several types of inorganic
and organic materials have this property [9].
The modern definition of ferroelectric polarization
can be found in some recent text books [10].
In ferroelectric materials, polarization manifests
itself as a hysterisis loop. In the presence of
an electric field the polarization of dipoles in a
ferroelectric material is non-linear and causes
a phenomenon known as electrical hysteresis.
A theoretical representation of polarization
mechanism of the dipoles in a ferroelectric
material is depicted in [11, 12].

Based on the work done by Pientschke et al. in
[13], the present work is devoted to the study of
the behavior of the time-dependent polarization
in ferroelectric structure. In [13], optical poling
techniques were used on the barium titanate
doped with 15% Sn. Let’s recall foremost that
in such materials, the macroscopic polarization
vanishes because of the randomly oriented
domains. A poling process is necessary in order
to impress the piezoelectric properties.

The propagation of a wave through a material

produces changes in the spatial and temporal
distribution of electrical charges as the electrons
and atoms interact with the electromagnetic fields
of the wave. The main effects of the forces
exerted by the field on the charged particles is
displacement of the valence electrons from their
normal orbits. This perturbation creates electric
dipoles whose macroscopic manifestation is
the polarization [14]. Polarization is the central
quantity that is used to explain the physics and
behavior of dielectric material [15]. One can
consider that the binding "core-electrons" are
described by the model of the oscillator. Then
the mathematical model developed in this work
results in a nonlinear second order ordinary
differential equation of one degree of freedom.
It is well known that nonlinear problems having
explicit exact solutions in terms of elementary
standard functions are very limited in physical
and engineering fields [16]. Some recent works
are done by Shah [17], [18], [19]. The authors
used sophisticated mathematical tools to solve
nonlinear differential equations. After a suitable
change of variables, the differential equation
obtained was solved analytically. Three different
solutions were obtained, corresponding to three
different regimes according to the values of
the damping parameter. These regimes are the
critically damped nonlinear response, the under-
damped nonlinear oscillation, and the over-
damped nonlinear response.

In this paper, we report the results from modeling
the polarization dynamics for barium titanate
stannate ceramics. The paper is organized
as follows. The Section 1 is devoted to the
mathematical model for the time-dependent
polarization of the ferroelectric structure studied.
Section 2 presents the analytical solutions of the
nonlinear differential equation. Section 3 deals
with the numerical approach and results and the
last Section is the concluded part.
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2 MATHEMATICAL MODEL
FOR THE TIME-DEPENDENT
POLARIZATION OF THE
BTS 15 STRUCTURE

Before we present the mathematical model, let’s
explain how a ferroelectric ceramic material is
polarized. Ferroelectric ceramics are formed of
grains and bond joints. Each grain is divided
into areas whose dipole moments are oriented
randomly in the absence of electric field. By
applying an external electric field, a given
temperature, the domains are oriented parallel
to this field for a metallized ceramic plate on
its sides. The ceramic polarizes and is made
piezoelectric. When the material is heated, there
is a temperature, so-called Curie temperature,
which corresponds to a structural phase change
of which is to consequently remove polarization.
The material then passes the ferroelectric state
to paraelectric state and this polarization remains
stable in a given domain of temperatures [20].
The starting point of this study is the Newton’s law
of motion, for a particle of masse m and charge
q :

m
d2u(t)

dt2
= Fext − Fint (2.1)

where u(t) is the displacement of the particle
of charge q from equilibrium. Fext is the applied
exciting force and Fint is assumed to be [16]

Fint = kφ(u) + b
dφu(t)

dt

Assuming φ(u) = u we have :

m
d2φ(u)

dt2
+ b

dφu(t)

dt
+ kφ(u) = Fext (2.2)

If we set Fext = 0, we have the well-
known differential equation of motion for the
displacement u(t) of the particle of charge q and
mass m, from the equilibrium.

d2u(t)

dt2
+ λ

du(t)

dt
+ ω0u(t) = 0 (2.3)

with λ = b
m

, and ω2
0 = k

m
; ω0 is the natural

resonance frequency of the mass-spring system
and λ is the damping factor. Eq.( 2.3) is used to
describe the damped linear oscillator of a single
degree of freedom. This equation represents
the dynamics of the motion of one dimensional
viscoelastic system [16]. The studied material
having viscoelastic behavior which is the case for
most materials. Indeed the material can conserve
energy and release energy after deformation.
On the other hand, it also has the ability to
dissipate energy. Such oscillatory viscoelastic
dynamical system is intrinsically characterized
at least by its stiffness, damping and inertia
nonlinearities so the mathematical description
of dynamics of the viscoelastic system must
include these nonlinearities. The Eq. (2.3) should
them be replaced, as mentioned in [16] ; [21] by
the generalized quadratically disspative Liénard
type equation governing the dynamics of a
viscoelastic system [16] ; [21].

φ
′
(u)ü+ φ

′′
(u)u̇2 + λφ

′
(u)u̇+ ω2φ(u)

=
1

m
F (t, u, u̇, ü) (2.4)

F (t, u, u̇, ü) being the external exciting
function and u(t) is the displacement variable.
For mathematical reasons, we use φ(u) = ul,
where l is the nonzero stiffness nonlinearity
controlling parameter. Using the relationship
between the force and the electric field and
introducing the expression of φ(u), we have :

u̇+ (l − 1)
u̇2

u
+ 2µu̇+

w2
o

l
u = g (u)

F (t)

m
(2.5)

with g(u) = u1−l

l
and

F (t) = E(t)Ll−1
o (2.6)

A simple substitution in Eq. 2.5 gives :

P̈ + (l − 1)
Ṗ 2

P
+ 2µṖ +

w2
0

l
P =

1

l
E (t)P l−1

s Ne0P
1−l; (2.7)

where e0 = q
m

is the charge per unit mass and Ps = L0Nq is the spontaneous polarization.
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We will restrict ourselves for this study to a constant field E(t) = E0. Let’s solve the following equation
obtained :

P̈ + (l − 1)
Ṗ 2

P
+ 2µṖ +

w2
0

l
P =

E0

l
Ne0P

l−1
s P l−1 (2.8)

3 EXACT ANALYTICAL SOLUTIONS

By making a variable change P = y
1
l , the previous differential equation may be cast in the form :

ÿ + 2µẏ + w2
0y = NE0e0P

l−1
s (3.1)

Let’s solve foremost the homogeneous equation associated to the equation 3.1

ÿ + 2µẏ + w2
0y = 0 (3.2)

the solutions of this equation depends on the roots of the caracteristic equation :

r2 + 2µr + 1 = 0 (3.3)

The reduced discriminant ∆′ of this equation gives us :

∆′ = µ2 − ω2
0 (3.4)

Three cases will be distinguished : µ > ω0, µ = ω0, and µ < ω0 representing three regimes called
respectively over damped, critically damped, under damped regimes. Let’s then examine the solutions
related to each of these regimes.

3.1 Exact analytical solution for critically damped nonlinear response :
µ = ω0

This case corresponds to the following solution :

y(t) =

(
E1 + E2t

)
e−ut + α/ω2

0 ; (3.5)

where E1 and E2 are arbitrary real constants ; and the constant α = NE0e0P
l−1
s . Using initial

conditions : P (0) = P0 and Ṗ (0) = q0 the response of the system is the time dependent polarization,
given by :

P (t) =

[[
P l0 −

α

w2
0

+
(
P l0(

lq0
P0

+ µ) − µα

w2
0

)
t

]
e−µt +

α

w2
0

] 1
l

(3.6)

3.2 Exact analytical solution for under damped nonlinear response
µ < ω0

The solutions are given by :

y(t) = e−µt
(
D1 coswdt+D2 sinwdt

)
+ α/ω2

0 (3.7)
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where α = NE0e0P
l−1
s . Use made of initial conditions P (0) = P0 and Ṗ (0) = q0 gives :

P (t) =

[
α

w2
0

+

[(
P l0 −

α

w2
0

)
cos(wdt) +

1

wd

[
P l0

(
lq0
P0

+ µ

)
− αµ

w2
0

]
sin(wtd)

]
e−µt

] 1
l

(3.8)

with

ωd =
√
ω2
0 − µ2

3.3 Exact analytical solution for over damped nonlinear response :
µ > ω0

The solutions are given by :

y(t) = H1e
−(u+wd)t +H2e

−(u−wd)t + α/ω2
0 (3.9)

whereH1 andH2 are arbitrary real constants. The final solution by making use of the initial conditions :
P (0) = P0 and Ṗ (0) = q0 gives :

P (t) =

[
α

w2
0

+ e−µt
[(

P l0 −
α

ω2
0

− 1

2ωd

)[
lq0P

l−1
0 +

(
µ+ ωd

)(
P l0 −

α

ω2
0

)]]
e−ωdt+

1

2ωd

[
lq0P

l−1
0 +

(
µ+ ωd

)(
P l0 −

α

ω2
0

)]
eωdt

] 1
l

(3.10)

where the constants α and ωd are given by :
α = E0Ne0P

l−1
s and ωd =

√
µ2 − ω2

0

4 NUMERICAL APPROACH
AND RESULTS

Let’s recall that changes in polarization by the
electric field appear in the form of a hysteresis
cycle where we denote the presence of a
coercive field, a polarization and a spontaneous
polarization. One also studies the spontaneous
polarization with respect to the temperature
in ferroelectric materials where the essential
parameter introduced is the Curie temperature ;
and the phase transitions have been highlighted.
In our work, we analytically compute time-
dependent polarization. The measurements
presented in this paper have been performed
by [13].

We used the method of optimization with the
least squares technique in Matlab package. The
problem is formulated as follows : what are the
values of parameters that reproduce at best the

experimental data? These parameters obtained
following the specific value of the damping
parameter are presented for each regime.
From the outset, it is important to emphasize
the shared characteristics of three systems
and the characteristics that are particular to
each regime. For three regimes, it is observed
that for the time τ > 30s, the experimental
and the theoretical curves coincide with the
experimental curve slightly above. We observe
there a plateau indicating an asymptotic value of
the polarization : P = 0.071C.m−2 of the BTS15
layer. When τ is varying between 0 and 30s, the
variation of the polarization is very abrupt at the
beginning and after decrease to the value τ =
30s.

The mean square error calculated numerically is
equal to 10−5, which allows us to say with these
parameters, the built model is excellent, hence
validating the model.
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The various parameters optimized for the
different regimes are as follows :

4.1 Aperiodic regime : µ > ω0

Consider the case of the aperiodic regime
see Figure 1. The parameters are :

N = 0.08179 : number of particles per
unit volume (density), µ = 1.049 : damping
coefficient, l = 1.032 : parameter hardening,
P0 = 0.001185 : initial polarization, q0 = 0.1693 :
initial polarization speed, e0 = 0.07377 : electric
charge per unit mass, ω0 = 0.3638 : natural
frequency, Ps = 0.2223 : saturation polarization
E = 1.500 : echelon excitation force, the mean
square error obtained is : mse = 1.1737 × 10−5.
The obtained results are shown in the Fig. 1.

From this figure, we can see that the experimental
plot is in full agreement with the theoretical plot.

4.2 Critical regime : µ = ω0

Consider the case of the aperiodic regime
see Figure 2. The parameters are :

N = 0.3385 : number of particles per
unit volume (density), µ = 4.0714 : damping
coefficient, l = 1.6627 : parameter hardening,
P0 = 0.00118 : initial polarization, q0 = 0.7255 :
initial polarization speed, e0 = 0.1285 : electric
charge per unit mass, natural frequency : ω0 =
4.0714, E = 1.500 : echelon excitation force,
Ps = 5.6613 : saturation polarization, the mean
square error obtained is : mse = 1.4402 × 10−5.

FIGURE 1 – Experiment and theoretical plots showing dependence of polarization
with time in ferroelectric structure for strong damping. Constant electric field is
applied at time t= 0 .
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FIGURE 2 – Experimental and theoretical plots showing dependence of polarization
with time in ferroelectric structure for critical damping. Constant electric field is
applied at time t= 0

4.3 Pseudo-periodic regime : µ <
ω0

Consider the case where the regime is
aperiodic, see Fig. 3. The parameters are :

N = 1.448 : number of particles per
unit volume (density), µ = 2.448 : damping
coefficient, l = 1/3 : parameter hardening,
P0 = 0.00118 : initial polarization, q0 =
0.3131 : initial polarization speed, e0 = 1.489 :
electric charge per unit mass, natural frequency
ω0 = 2.483, Ps = 1.427 : saturation
polarization E = 1.500 : echelon excitation
force, the mean square error obtained is :
mse = 1.2622 × 10−5. We use nonlinear least
square method as approach of optimization. The
method of least squares is used to estimate
the values of the unknown parameters. The
biggest advantage of nonlinear least squares
regression over many other techniques is the
broad range of functions that can be fit. Although

many scientific and engineering processes can
be described well using linear models, or
other relatively simple types of models, there
are many other processes that are inherently
nonlinear. One common advantage is efficient
use of data. Nonlinear regression can produce
good estimates of the unknown parameters
in the model with relatively small data sets.
Another advantage that nonlinear least squares
shares with linear least squares is a fairly
well-developed theory for computing confidence,
prediction and calibration intervals to answer
scientific and engineering questions. In most
cases the probabilistic interpretation of the
intervals produced by nonlinear regression are
only approximately correct, but these intervals
still work very well in practice. Even if all
the optimization methods have advantages and
disadvantages, it is useful to highlight here the
robust advantages of the presented method.
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FIGURE 3 – Experiment and theoretical plots showing dependence of polarization
with time in ferroelectric structure for low damping. Constant electric field is applied
at time t= 0.

5 CONCLUSIONS

A model for the simulation of the polarization
dynamics in a ferroelectric material, the barium
stannate titanate was presented. A detailed
analytical solutions of the nonlinear differential
equation was performed for different regimes of
damping parameter. The simulations compared
to measurements reveal that the model is
satisfactory for optimum values of the obtained
parameters . That is comforting because the
mean square error obtained is of order of 10−5.
It is not worth denoting that the effects of electric
field on the dynamical behavior of ferroelectric
materials is of a capital interest and especially
for large amplitude of externally applied field.
That leads to strong non-linearity in ferroelectric
materials. In future work we will consider a
variable electric field and determine the response
of the material.
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