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Abstract

Recent developments in machine learning-based molecular fragment linking have demonstrated
the importance of informing the generation process with structural information specifying the
relative orientation of the fragments to be linked. However, such structural information has so far
not been provided in the form of a complete relative coordinate system. We present a decoupled
coordinate system consisting of bond lengths, bond angles and torsion angles, and show that it is
complete. By incorporating this set of coordinates in a linker generation framework, we show that
it has a significant impact on the quality of the generated linkers. To elucidate the advantages of
such a coordinate system, we investigate the amount of reliable information within the different
types of degrees of freedom using both detailed ablation studies and an information-theoretical
analysis. The presented benefits suggest the application of a complete and decoupled relative
coordinate system as a standard good practice in linker design.

1. Introduction

Computational drug design remains a challenging problem, primarily due to the vast size of the drug-like
chemical space [1-4]. A sub-problem of molecular generation is the task of fragment linking: given a pair of
structures, the goal of the design process is their connection via an appropriate linker. This process of
generating larger molecules from pre-determined fragments is central to current targeted protein
degradation approaches, which have become a major focus of structure-based drug design in recent years
(see [5] for a recent review).

For targeted protein degradation, a fragment binding to an E3 ligase and a fragment binding to a target
protein of interest need to be joined by a linker. It is well-known that geometric considerations are crucial for
successful linker design in this context. For example, the length of the linker between the two binding
fragments plays an important role for a compound’s efficacy as a drug [6, 7], with linker lengths below some
threshold leading to ineffective pharmaceuticals [8]. Accordingly, the linker design process should take into
account the desired distance between the fragments. In addition, the resulting linker should avoid interfering
with the binding modes of the individual fragments so that the resulting compound maintains high activity
[9, 10]. Thus, an effective linker generation method should incorporate structural information such as the
relative distance and orientation between the molecules to be joined.

Recently, a linker generation method using such structural information, called DeLinker [11], has been
proposed. DeLinker is based on a machine learning framework operating on molecular graphs and provides
a generative model allowing to create different linkers for a given pair of fragments. While the results of the
method arguably constituted a breakthrough in machine learning-based fragment linking, the structural
information employed by the method is problematic as it consists only of the fragments’ distance and angle.

Conversely, the benefits of a complete decoupled coordinate system are well known in computational
chemistry and biophysics. With the information processing nature of machine learning models in mind, a
relevant example here is the calculation of configurational entropy [12—19] from molecular mechanics
simulations. Due to physico-chemical forces, the molecular coordinates are subject to soft constraints. For
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instance, the distance between two neighboring hydrogen atoms in a methyl group hardly varies. Such soft
constraints narrow the accessible phase space of the molecule and therefore lower the entropy. In Cartesian
coordinates, these soft constraints need to be accommodated by adequate sampling, which quickly becomes
prohibitive with increasing molecular size. Another example involves the mathematically rigorous separation
of the placeholder (dummy) atom partition function from the physical partition function in alchemical free
energy simulations [20]. Here, if the transformed molecule comprises less atoms then the original molecule,
dummy atoms are utilized. The dummy atoms need to be attached to the physical part of the transformed
molecule by applying forces only to a selected set of decoupled coordinates. These coordinates are selected
for the absence of geometrical constraints between the physical and the dummy coordinates (otherwise, the
physical partition function is coupled to the dummy partition function, which leads to inaccuracies). A
simple example for a geometrical constraint would be the fact that three angles in a triangle sum up to 180
degrees, so only two angles can be chosen freely. Then, e.g. if two (force-carrying) angles reside in the
physical molecule and one is part of the dummy atom group, the physical partition function does not
factorize from the dummy atom partition function and systematic bias arises. Note that these geometrical
constraints are hard mathematical constraints. They differ from the soft constraints mentioned above, which
stem from physico-chemical forces rather than from pure geometrical aspects.

Based on bond lengths, bond angles and torsion angles, coordinate systems which are by definition
free from geometrical constraints can be formulated. Importantly, such coordinate systems feature
physico-chemical decoupling naturally by accommodating the molecular topology made up from rigid
bonds. In this work, we apply such a bond-angle-torsion (BAT) coordinate system in order to specify the
relative orientation of molecular fragments to be linked. As opposed to the coordinates applied in previous
work [11], the coordinate system proposed in this article is mathematically well-defined, complete and
decoupled. We demonstrate the advantage of such a coordinate system by incorporating it into the DeLinker
framework [11] and performing detailed analyses regarding the information content in the different degrees
of freedom. Our results highlight the advantage of informing linker generation methods by a complete and
decoupled set of coordinates over the current practice of using partial structural information.

2. Methods

In this article, we propose a beneficial choice of a relative coordinate system for linking pairs of molecular
fragments by specifying their relative orientation in 3D space. In order to benchmark our proposed
coordinate system, the details of which will be given below, we follow DeLinker [11], a recent pioneering
machine learning framework for linking molecular fragments.

2.1. Overall model framework
Here, we give a brief summary of the DeLinker [11] framework. For further details, we refer to [11] and the
references therein (in particular [21-23]).

From a high-level point of view, DeLinker [11] is embedded in a variational autoencoder (VAE) [24]
framework. Linker generation is performed by seeding the latent variables of the decoder of the VAE using
two fragments as input. First, the graph representation of the fragment pair is encoded by a standard gated
graph neural network [23]. Then, a set of atoms is initialized in order to serve as expansion nodes for linking
a pair of fragments. The maximum linker length is given by the chosen size of this set of expansion nodes.
For each atom, a multidimensional hidden state is drawn from standard normal distributions. The atom type
of the respective node is derived via sampling from a learned mapping from the hidden state to a Boltzmann
distribution (i.e. softmax or, more precisely, softargmax).

Successively, the fragments are linked by attaching atoms from the set of expansion nodes in an iterative
manner. Following the breadth-first paradigm, a first-in-first-out queue is initialized with two exit atoms
(figure 1), one per fragment. The focused node, i.e. the first node in the queue, forms covalent bonds to
candidate atoms, which are themselves added to the queue upon bond formation. The selection process of
the focused node is terminated upon forming a bond to a special stop node. Then, the focused node is
removed from the queue and the next atom in turn initiates bond formation. Nodes become closed once they
are focused, which means they are no longer considered as candidate nodes for bond formation throughout
the entire generation process. The bond selection procedure is accomplished by computing feature vectors
between the focused atom and all candidate atoms. These feature vectors comprise both atom types, their
hidden states as well as their graph distance. Furthermore, the bond formation process takes as an input the
average of the hidden states across all nodes during node initialization (i.e. iteration zero) as well as at the
current iteration. The current iteration number is supplied in addition. Importantly, the feature vector is
augmented with coordinates specifying the relative orientation between the fragments, the details of which
will be given below. The actual chosen bond and its type (single, double or triple) are sampled from
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Figure 1. Bond-angle-torsion (BAT') coordinates. For specifying the relative orientation of two molecular fragments, we first
define the exit atom E, of the first fragment as the atom which is connected to the initial linker atom L;. E, and L, are defined

analogously for the second fragment. Two of the BAT coordinates are constituted by the exit vectors |by | = |7, 1, | and
|bs| = |1, —E, |, bridging the exit atoms to the initial linker atoms. A third BAT coordinate is defined by the length of the

pseudo-bond |b2| = |71, 1, |. The angles between 75, 1, and 77, 1, as well as between 7, 1, and 77, g,, termed a1 and
respectively, yield another two BAT coordinates. In order to obtain six BAT coordinates, a well-known number for specifying
relative molecular orientations, we add the dihedral angle ¢ of the atom chain E;—L;—L,-E,.

Boltzmann distributions, which are based on learned mappings from the feature vectors and are masked with
valency constraints [21].

After each bond formation, the hidden states of all nodes are updated with respect to the newly formed
graph topology. This update is performed via a standard gated graph neural network [23], taking as input the
initial states of all nodes. Starting from the states of the nodes at iteration zero, instead of the current state,
prevents the network from learning assembly pathways [21].

The generative process ends when the first-in-first-out queue is empty. Note that the described procedure
does not prevent the generation of unlinked fragments, which, however, constitutes the only mechanism
leading to invalid molecules as an outcome.

Fragment linking constitutes a multimodal problem. Two fragments can be linked in many different
ways. Inspired by Jin et al [22], a low-dimensional latent vector z is introduced in order for the model to
accommodate this one-to-many mapping. To avoid difficulties known from computer vision [25], during
training, z is derived from the encoding of the ground-truth linked fragments. In this manner, the model is
encouraged to pay attention to the latent vector. Furthermore, z is regularized via the KL-divergence to the
standard normal distribution.

2.2. Relative coordinates

In this section, we derive our proposed relative coordinate system for linking molecular fragments. The
following derivation follows the bond-angle-torsion [12, 26-31] coordinate formalism, which closely relates
to the z-matrix representation [31, 32].

We use the following nomenclature (see figure 1). The atoms of the fragments to which the linker is
covalently bound are referred to as exit atoms; E; and E, for the two fragments, respectively. The linker
atoms L; and L, are attached to E; and E, via a rotable bond. Naturally for the problem of linking molecular
fragments, we are not concerned with the global position and orientation of the fragment pair as a whole.
Rather, we are interested in the position and orientation of the fragments relative to each other. Thus,
without loss of generality, exit atom 1 (E;) is positioned at the origin of the Cartesian coordinate system,
linker atom 1 (L;) on the x-axis and linker atom 2 (L;) in the x—y plane. Then, these anchored Cartesian
coordinates [26, 27] are given as follows:

?E.Ir = 07030)
L7,0,0)
L;,Lz,O)

5By E). (1)

2T _
1'L1 =
2T
TL2—

7T _
T’Ez—

P

In order to achieve ease of notation, we constitute the following definitions.

T S 5 x

b, g1, =71, — 5, = (L7,0,0)

-T S R — x x 1y
b, = rL—L, =1L, — T, = (Lz - 17L2»0>

T - o
by =7, 5 =75 — 11,

Then, our implemented BAT coordinates are given as:
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Figure 2. Treating periodicity. (a) shows an illustration of the problematic distance metric. Both the top and bottom

angles measure 10 degrees geometrically. For the bottom angle, this is correctly reflected in its numerical value, i.e.

| Actpottom| = |185° — 175°| = 10°. For the top angle, however, the numerical value deviates from the underlying geometry due
to the periodic discontinuity at 0° =360°. Here, we have | Aaop| = [5° — 355°| = 350°. This discontinuity of the mapping from
geometric angles to their numerical values poses a challenge for machine learning algorithms. (b) The periodic discontinuity can
be avoided by considering the dihedral an angle in the complex plane. Supplying both the real and imaginary part, i e. sin(¢) and
cos(¢), respectively, dihedral angles are presented to the model in continuous form and without loss of information.

|b1| = ‘Lﬂ
Bl = /(05— L2 + (1)

B3] = /(B — 132 + (B, — L3)2 + (B3 )2

ST -
(v] = arccos L 'ﬁz
|b1||b2|
o -
Qly = arccos i 'Zj3
21193
b, B3|
¢ = arctan2 \b;|[b_iT : (b; X l;s)] (b_i X b;)T . (b; X b_:;) (3)
|bl><b2||b2xb3| ‘bl><bz”bz><bs|

Matrix multiplications and outer vector products are denoted by - and X, respectively. The back-
transformation from BAT (equation (3)) to anchored Cartesian coordinates [26, 27] (equation (1)),
demonstrating the completeness of our proposed BAT coordinate system, is given in the appendix. In this
context, note that we do not explicitly feed the model the lengths of the exit vectors, i.e. |b;| = |75 1, | and
|bs| = |F, 5, | As physical bond lengths, their values hardly vary in comparison to the pseudo-bond length
|by| = |71, -1, |, which dominates the geometry. Thus, they barely carry any useful information for the model.
In contrast to bond angles, i.e. «; and «; in the present case, dihedral angles are periodic. This means
ay,q; € [0,7], but ¢ € [0,27). Periodicity poses a challenge for machine learning algorithms, since the
implied distance metric does not correctly reflect the underlying physical geometry. As done commonly (see
e.g. [33-35]), we feed the model the sine and cosine of ¢, instead of the plain dihedral angle value. One way
to motivate this treatment states as follows. There is a periodic discontinuity (see figure 2(a)) at 0° =360° in
the mapping of the underlying geometry to its numerical dihedral angle value. A solution is inspired by the
complex unit circle (figure 2(b)): One maps the dihedral ¢ to exp[i(7/2 — ¢)] = sin(¢) + icos(¢). The
machine learning model is fed the real and imaginary part of this transformation, i.e. both sin(¢) and
cos(¢). These angular functions, as a representation of the periodic dihedral angle ¢, are both continuous as
well as faithful with respect to the underlying geometry. Additionally, they naturally map to the interval
[—1, 1], which constitutes another desirable property. Note that the transformation exp[i(7/2 — ¢)] was
chosen over just exp(i¢) in order to match the complex unit circle with the canonical definition of dihedral
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angles (figure 2(b)). However, as the order of the input features is irrelevant for the machine-learning
algorithm, this choice of swapping sine with cosine is arbitrary.

2.3. Data preparation

Following DeLinker [11], we used two datasets, a selected [36] set of 250 000 ZINC [37] compounds as well
as CASF-2016 (i.e. the PDBbind core set) [38]. A major difference between these two sets is the origin of the
3D structural information. While for CASF, the structures stem from 285 high-quality crystal structures of
ligands bound to proteins, the ZINC structures were generated in silico using RDKit [39], as detailed below.

For both data sets, preparation was performed in the same manner. The ligands were split into three
parts, i.e. two fragments and the corresponding linker. Cuts were performed on acyclic single bonds outside
of functional groups [40]. Triplet splits for which either of the three components is unrealistically small, or
the linker is inflated with respect to the fragments, were removed. The remaining triplet splits were filtered
further by molecular graph (2D) properties, in particular synthetic accessibility (SA) [41], ring aromaticity as
well as pan-assay interference compounds (PAINS) [42]. This procedure yielded ~420 000 triplet splits for
the ZINC data set and 309 triplet splits for CASE.

Training was performed purely on the ZINC data set. 400 compounds each were randomly selected from
the whole ZINC set and held back as a validation and test set. The CASF data was used solely as a test set for
evaluation.

As outlined above, unlike for CASF, where experimental 3D structures are available, the ZINC 3D
coordinates needed to be generated. This was accomplished using RDKit [39] via employing the Merck
molecular force field (MMFF) [43, 44]. The DeLinker [11] code without the 3D structures of the training set
(most likely due to storage space reasons). For calculating our proposed relative coordinates of the training
set, we reproduced the 3D structures. DeLinker [11] uses the distance from E; to E; as well as the angle
between the exit vectors (i.e. 7,1, and 7, _,1,) as relative coordinates (see figure 1). In order to ensure exact
reproduction, we recalculated these relative coordinates alongside the proposed BAT coordinates and
compared them to the data provided with [11]. Our comparison demonstrated an exact match. For further
details, see the DeLinker publication [11].

2.4. Training

The model was trained under a VAE framework over 10 epochs, exclusively on the ZINC training set, using
the Adam optimizer with a learning rate of 10~ and a minibatch size of 16. The encoding of the nodes
hidden states as well as the latent vector z encoding the ground-truth molecule were regularized via KL

loss to follow standard normal distributions. A two-fold cross-entropy reconstruction loss was applied, one
part measuring the error in the prediction of the atom types, the second part judging the sequence of
bond-formation steps in order to reconstruct the ground truth molecule. Further details can be found in
[11,21].

2.5. Evaluation

For each of the fragment pairs in the triplet cuts of the test sets, i.e. 400 in the case of ZINC and 309 for
CASE, 250 linkers were generated. This amounts to 100 000 and 77 250 linked molecules generated,
respectively. We applied the standard metrics for molecular generation tasks, i.e. fractional validity,
uniqueness and novelty. Validity was assessed by RDKit [39] being able to parse the generated SMILES [45]
strings as connected molecules. Uniqueness was calculated by the cardinality of the (unique) set of generated
molecules divided by the total number generated. Novelty describes the fraction of generated molecules
which were not contained in the training set.

Furthermore, we assessed the generated molecules via the 2D filtering metrics given in subsection 2.3. SA
[41] is a measure for the difficulty of physically synthesizing the molecule in the laboratory. Ring aromaticity
amounts to the properties of a molecule constituting a drug. PAINS [42] assesses the reactivity of a
compound by performing a knowledge-based analysis on its substructures.

Arguably the most significant estimator of the impact of our coordinate system is the models capability
to recover the ground-truth linker from the original triplet cut, as the structural information provided to the
generation process is derived from the respective ground-truth linker. In this manner, the model is
conditioned to reproduce the ground-truth linker more frequently.

2.6. Information-theoretical analysis

Input features, referring to the coordinates in the present case, should be uncorrelated, i.e. decoupled, in
order to assure efficient learning for the model. Therefore, the mutual information between the input
features should be low [46]. In order to investigate the decoupling, we calculate pairwise mutual information
values, given as [12—14, 17-19]
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I(X,Y)=S(X)+ S(Y) — S(X,Y) (4)

with

Zp ’ <J"Ax>
I
S(Y) ==Y p/ln (IfAy>

j
pz]
Zpl (]x]yAXAy> (5)

Equation (5) refers to discretized differential entropy values. This means the underlying continuous
probability densities are approximated by sampling to discrete histogram bins. The indices x and y designate
an arbitrary coordinate, i.e. a bond, an angle, or a dihedral in the present case. p} denotes the probability for
the coordinate x to assume a value in bin i. If N samples for coordinate x are taken, and N; of them fall into
bin i, then pf = N;j/N (and analogous for p]y ). Furthermore, pi’jy = N;j/Nif Nj; of the N samples taken fall
into bin 7 for the x-coordinate and bin j for the y-coordinate in the according 2D histogram. Ax and Ay are
the widths of the equally spaced bins. J7 is the Jacobian of coordinate x in the middle of bin i. Using the
definition of the marginals

=27
j
= 2P (6)

we can write equation (4) as

Z ;] /U3 AxAy)
piyln pi/UFAx) +p}/ (T} Ay)

7ZP1 yll‘I(p;’] > (7)

The last equality exhibits interesting features. First, the Jacobian determinants have canceled out, meaning
the type of degree of freedom has become irrelevant. Furthermore, the bin sizes have vanished. This

means that the mutual information calculated from discretized differential entropy values resembles discrete
information in Shannon’s [47] sense. Note, however, that the mutual information still is dependent on bin
sizes; the probabilities pf]y , p¥ and p;v are affected by this choice. For example, let us denote the limit where
the binning becomes binary, meaning the bin sizes are chosen so small that there is either no or only one data
point in each bin. Assuming that both the x- as well as the y-marginal take on such a binary form, we can

write for N data points:
Pz
J

= In(N). (8)

Furthermore, note that we write the equations without the Boltzmann or Gas constant. Spatial entropies, as
in the equation (5), do not bear physically meaningful units. The reason is the fact that the semi-classical
entropy integral cannot be split in a manner that either the spatial or the momentum entropy bear physically
meaningful units [14]. Upon taking entropy differences, however, the problematic terms cancel out [14].
This means that the mutual information in equations (4), (7) and (8) can indeed be multiplied with the
Boltzmann or Gas constant to yield physical entropy values. Stated without such a physical constant, the units
obtained here are natural units of information (nats, similar to bits, however, using the natural logarithm).
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Table 1. Graph metrics. 2D quality criteria are compared for molecules generated using BAT coordinates versus the values from the
DeLinker [11] publication. Values which are not given in the DeLinker [11] publication are marked via an ‘N/A’ entry. For the ZINC
dataset, the DeLinker [11] ablation study values are included. The two 54 test sets at the bottom constitute subsets of target linkers with
at least five atoms in length. Best in category (row) values have been printed in bold font.

No info Distance only DeLinker BAT

Recovered ZINC 74.5 78.3 79.0 88.3
CASF N/A N/A 53.7 56.3

ZINC 5+ atoms N/A N/A 67.0 80.8

CASF 54 atoms N/A N/A 29.8 34.0

Novel ZINC 36.2 37.6 39.5 39.6
CASF N/A N/A 51.0 53.3

ZINC 54 atoms N/A N/A 49.4 47.9

CASF 54 atoms N/A N/A 68.7 69.1

Valid ZINC 97.0 98.6 98.4 98.2
CASF N/A N/A 95.5 94.5

ZINC 54 atoms N/A N/A 98.1 98.3

CASF 5+ atoms N/A N/A 94.7 93.1

Unique ZINC 51.2 47.3 44.2 37.6
CASF N/A N/A 51.9 47.1

ZINC 54 atoms N/A N/A 61.0 52.7

CASF 54 atoms N/A N/A 72.9 66.3

Pass all 2D filters ZINC 89.9 90.2 89.8 90.5
CASF N/A N/A 81.4 80.4

ZINC 54 atoms N/A N/A 84.1 85.5

CASF 54 atoms N/A N/A 71.7 70.3

Pass ring filter ZINC 95.2 94.5 94.8 95.5
CASF N/A N/A N/A 92.5

ZINC 54 atoms N/A N/A N/A 92.2

CASF 54 atoms N/A N/A N/A 87.2

Pass SA filter ZINC 95.1 95.5 95.3 95.5
CASF N/A N/A N/A 85.1

ZINC 54 atoms N/A N/A N/A 93.4

CASF 5+ atoms N/A N/A N/A 77.6

Pass PAINS filter ZINC 97.8 98.4 97.9 98.2
CASF N/A N/A N/A 98.0

ZINC 54 atoms N/A N/A N/A 97.7

CASF 54 atoms N/A N/A N/A 97.7

3. Results

When comparing different generative models for linker generation, arguably the most indicative metric for
the quality of the provided coordinates is the rate of recovery of the ground-truth linker, as it quantifies the
models capability to follow the supplied information. Table 1 shows that this metric improves across all test
sets when using the full BAT coordinate system, with the most drastic enhancement for ZINC. The
coordinate system carries information about the ground-truth linker. With higher quality information
supplied, the model is expected to recover the original linker more frequently. This demonstrates that the
model takes advantage of the augmented information by following the provided target geometry. Since the
generation process is more directed, the uniqueness metrics drops, which serves as another indicator for the
quality of the information content in our proposed coordinate system.

Considering the ablation study of DeLinker [11] on the ZINC test set (see table 1), the bulk of the
geometric information obviously is contained in the distance coordinate. Compared to providing no relative
coordinates at all, the distance takes the recovery rate from 74.5 to 78.3 percent. Adding the angle coordinate,
i.e. considering the complete DeLinker [11] coordinate set, yields an additional gain of comparatively low 0.7
percent. Figure 3 provides insight on this outcome. When using a different random seed for RDKit to
generate conformers, the DeLinker [11] distances are preserved rather robustly with a Pearson correlation of
0.86. The angles, on the other hand, show significant deviations. Their Pearson correlation to the angles of
the conformers generated with the previous random seed is given as a relatively low value of 0.47. This

7
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Figure 3. Robustness of DeLinker coordinates. The plots compare two random seeds used for generating conformers for the test
set. The distance as well as the angle of the DeLinker coordinate set are plotted. The distances demonstrate a somewhat adequate
robustness between random seeds, with Pearson correlation of 0.86 between seeds. For the angles, we observe a considerable
fraction of outliers, decreasing the correlation to 0.47 only. The robustness to altering random seeds is proposed as a proxy for the
quality of the provided structural information.

Table 2. BAT ablation study. The same metrics as in table 1 are investigated and the impact of the different types of coordinates is
dissected. As was the case for the DeLinker [11] coordinates, the 2D filter and the valid criteria are generally high. Referring to the
recovered metric, similar to table 1, the bulk of our information is carried in the distance coordinate, albeit the improvement appears
significantly more distinct. Furthermore, the unique metric continues to behave opposite to the recovery metric, supporting the
hypothesis of the coordinate information providing valuable guidance for the model.

No info Distance only Distance and angles BAT

ZINC Recovered 74.5 84.5 87.0 88.3
Novel 36.2 40.6 38.6 39.6

Valid 97.0 97.5 98.2 98.2

Unique 51.2 44.8 37.8 37.6

Pass all 2D filters 89.9 89.8 90.5 90.5

Pass ring filter 95.2 94.5 95.6 95.5

Pass SA filter 95.1 95.1 94.9 95.5

Pass PAINS filter 97.8 98.0 98.2 98.2

indicates that the reliability of the angular information is low compared to the distance information, which
attributes to only minor gains when feeding them to the model.

In order to further investigate the information content in the relative coordinates proposed here,
analogue ablation studies were performed for the BAT coordinates. Table 2 lists the results.

Similar to the DeLinker [11] coordinate system, the bulk of the BAT information is carried in the distance
coordinate. However, the BAT distance (|77, ,| in figure 1) takes the recovered metric from 74.5 to 84.5
(table 2), as opposed to only 78.3 (table 1) for the DeLinker [11] distance |7, g, |. Given the similarity of the
two distances, this discrepancy appears rather drastic at a first glance. The reason arguably lies in the fact that
the DeLinker [11] distance fails to decouple from the angular and dihedral coordinate systems. For the 6 BAT
coordinates in figure 1, one can vary each of them while keeping the others constant. However, any such
variation will change the DeLinker [11] distance |7, , |. Furthermore, varying the BAT angles or the BAT
dihedral will change the DeLinker [11] angle. When comparing the distances in figure 3 to those in figure 4,
the effect of this coupling becomes evident. The DeLinker [11] distance shows a Pearson correlation of 0.86
between coordinates of conformers generated with different random seeds. The decoupled BAT distance, on
the other hand, demonstrates excellent robustness to the choice of random seed with a Pearson correlation of
0.99. This explains the arguably drastic improvement of the recovered metric by 10 percent using the BAT
distance only.

Feeding the model the BAT angles additionally, we gain another 2.5 percent, as opposed to 0.7 for the
DeLinker [11] angle. Comparing the correlation plots, BAT provides two angles with a Pearson correlation of
0.67 and 0.72 versus one angle with 0.47 for DeLinker [11]; the BAT angles are decoupled from the distance
and dihedral system.

Figure 4 shows that the dihedral angle information is of low quality. Interestingly, even given this low
quality information, the model improves the recovered metric by 1.3 percent. Note that this value exceeds the
angular improvement of the DeLinker [11] coordinates (0.7) almost by a factor of two. The reason, as above,
arguably lies in the decoupling from the distance and angular system; while the information is certainly
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Figure 4. BAT coordinate quality. Analogous plot to figure 3 for the proposed BAT coordinates. The robustness to varying
random seeds for the distances appears excellent with a Pearson R = 0.99. Compared to figure 3, both our angles demonstrate
enhanced reliability. Referring to the dihedrals, the estimated information content is considerably low.

non-reliable on its own, it is indeed orthogonal, i.e. non-redundant, with respect to the other coordinates.
Altogether, the BAT coordinate system takes the recovery metric to 88.3 percent, which is an improvement of
9.3 percent over the DeLinker [11] coordinate system.

Finally, we performed an information-theoretical analysis comparing the two input coordinate sets.
Given that the DeLinker [11] coordinates are given as a distance and angle pair, we compare the mutual
information using the training set between the Delinker [11] coordinates with the mutual information
between the BAT distance and either BAT angle (figure 5). We find that, with few exceptions at large bin
sizes where values have not converged, the BAT coordinates exhibit lower mutual information, which
demonstrates an increased amount of decoupling. Given these insights on an information-theoretic level, we
suggest the presented graphs as strong evidence for the decoupling of the coordinate system as a major factor
for the improvements.

4, Discussion and conclusion

Inspired by recent pioneering work [11], we have demonstrated a considerable beneficial effect of the
application of a well-behaved coordinate system on machine learning-based molecular linker generation.
The enhancements of our proposed relative coordinate system, which roots in the BAT coordinate
formalism, were established by demonstrating the improvement of such a coordinate system in the
framework of [11]: our approach allowed to decrease the number of test set examples for which the
ground-truth linker could not be recovered by roughly one half (a reduction of 44.3 percent). We performed
comparative analyses on various indicative aspects: first, using common metrics for generative models as well
as molecular graph evaluation, and second, ablation studies on the included coordinate types which allowed
identifying the coordinates which provide the most valuable information to the model. We furthermore
investigated the reasons for the performance of the different coordinates by performing a robustness analysis
with respect to the conformer generation process given different random seeds. By means of
information-theoretical calculations, we compared the amount of decoupling in the two input coordinate
sets. The results support the hypothesis that the decoupled nature of our presented coordinate system plays a
major role for the improved performance of the generative process.
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Figure 5. Mutual information comparison. The plots compare the mutual information between the DeLinker [11] distance and
angle as well as between the BAT distance and bond angles on the training set of ground-truth molecules. Since the mutual
information is dependent on the bin size (see section 2), the plots show the mutual information as a function of the granularity in
terms of the number of bins used. Different regimes of the number of bins are shown. Note that the mutual information curves
for both our angles lie on top of each other. With the exception of rare events in the regime of low number of bins (top graph),
our coordinates exhibit lower mutual information, i.e. enhanced decoupling.

Our findings highlight the advantage of utilizing structural information in future models for molecular
fragment linking. Given the considerable improvements demonstrated, we propose the presented coordinate
system as a standard technique for linking molecular fragments.

The application of structural information in models of linker generation is of high relevance for
fragment-based drug discovery. While some progress has been made in understanding the role of the linker
in compounds designed for targeted protein degradation [8], many aspects remain poorly understood.
Supplying enhanced structural information to linker generation methods can lead to better in silico proposals
here, allowing to focus in vitro evaluation on more promising candidates. The relative coordinate system
presented in this work constitutes a first step towards more 3D aware models, which may take into account
not only the relative positions of the fragments, but also (e.g.) a desired shape of the linker. As the properties
of the linker play an important role in defining the overall compound efficacy, a better understanding of its
geometry constitutes a key ingredient for designing improved pharmaceuticals.
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Appendix. Transformation from BAT to anchored Cartesian coordinates

In order to demonstrate the completeness of the proposed BAT coordinate system (equation (3)), the
back-transformation to anchored Cartesian coordinates [26, 27] (equation (1)) is given as follows.

Ly = |bi]
L3 = LT 4 |by| cos (o)

I = |by| sin (o)

—

- - i b, AN
P, =71, + b3 cos(@)+ | —= xbs |sin(o)

|bs|
b b,
—_— 'b3 [1—COS(¢)}T
b2 |b2|
with
_‘/T — —
by = <|b3|cos(a1 + ), |bs|cos(ag + ), O). (9)

Here, b_;/ represents b_; for the case ¢ = 0. In order to obtain b_; from b_; /, we rotate b_;l around an axis parallel
to by by an angle ¢. Following previous work [31], this coordinate transformation is applied by using
Rodrigues’ rotation formula. Note that equation (9) is never explicitly calculated. It is given here for the sole
purpose of demonstrating the equivalence of the BAT and internal Cartesian coordinate systems.
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