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Abstract

In this study, we considered two different difference equation systems. We showed that one of these systems
has 6 periods and the other has 8 periods. Then, we obtained the equilibrium points of these systems and
examined some behaviors of the system depending on the equilibrium points.

Keywords: Difference equations; systems of difference equations; nonlinear periodic systems of difference
equations.

1.Introduction

A system of difference equations often tells us about a problem in daily life, science or engineering [1-4], [5-8].
In this respect, the equilibrium points of the difference equation system and how it will behave at these
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equilibrium points are extremely important [9-10]. The purpose of this study: Using many of the models we
have mentioned above, our primary goals are to first create a different difference equation system and
investigate the balance points and periodicity of this system, as well as examine the behavior of the system at
the balance points of the system. In line with this goal, by using [4], this study will focus on two different
models given below:

_ yn—l 1

Xn+1 - + '

yn (Xn—z + yn—z + anz) (Xn—l + yn—l + Zn—l)

1

Yo = , 1.1

(Xn—l + yn—l + anl)

1 2

oy = - Yo - , (n > 0)

Xnot — Yna Y (anz i Zn—z) (Xn—l + Yot anl)

with initial values X_,, X, X5, Y., Y.a. Yo.Z, Zg, Zy(X,-Y,#0, X, —-Yy,#0,

X, +Y,+2,#20, x,+y,+2,#0, x,+Yy,+2,#0) € R{0}and

— yn—l + 1
" yn(xn—3 + yn—3 + Zn—3) (anz + yn—Z + Zn—Z)
1
yn+1 = ’ (12)
(Xn—z + yn—2 + Zn—z)
1 2
oy = - Yot - , (n > 0)

Xi2 = Yoo Yn (Xn—3 +Yost Zn—3) (Xn—z +VYoot Zn—z)

with initial values X 5, X_,, X_;, Xo0 Y2, Y 20 Y Yo Zar 25, 24, Zo(X, =Y, #0, X, -y, %0,

Xa+Y,+2,#20, X, +y,+2,#20, x,+y, +2,#0, x,+Yy,+2,#0) € R{0}.

Firstly, we give basic preliminary definitions and a theorem. Let |, I,and I, be some intervals of real
numbers and let F:l xIl,xl, > 1, F il xl,xl;—>l,and F:l xI,xl, —>1, be three
continuously differentiable functions. For every initial condition (xs, Yo zs)e I, x 1, x1,, it is obvious that
the system of difference equations (1.3)

Xn+l = Fl(xn' yn’ Zn)
yn+l = I:2 (Xn’ yn' Zn) (13)
Zn+1 = F3(Xn' yn’ Zn)

has a unique solution {X, Y, ,Z,}.
Now, we can give some definitions and theorem in literatire:

Definition 1.1. A solution {X_,Y,, Z,} of the system of difference equations (1.3) is periodic if there exist a

positive integer p such that X, , =X., Y, , =Y, Z,,=2Z, the smallestsuch positive integer p is called

n+p n+p

the prime period of the solution of difference equation system (1.3).

Definition 1.2. A point (X, Y, Z)e I, x 1, x |, is called an equilibrium point of system (1.3), if
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X= Fl(x’ y’ Z)’ y = Fz(xl y, Z)l Z= F3(X’ y, Z) [1,2]
Theorem 1.1. Let J (X, Yy, Z) be Jacobian matrix of system of difference equations (1.3) at the equilibrium

point (X, Y, Z) and P()) denote the characteristics polynomial of matrix J (X, Y, Z). Then the followings are
true:

a) If all roots of P()) lie inside the open unit disk [|<I, then the equilibrium point (X, Y, ) is asymptotically
stable.
b) If all roots of P(A) have absolute value greater than one, then the equilibrium point (X, Y, Z) is repeller [1,2].

2.Main Results

In this section all results have been obtained by using [3,4]. The following theorems show us the period of
solutions of the systems (1.1) and (1.2).

Theorem 2.1. Suppose that {X,,Y,,z,} are the solutions of the difference equation system (1.1) with initial
values X,=p, X,=0, Xg =T, y,=5§, y,.=t, Yo =u,z,=k, z,=1,
Zo=m(X, -y, #0, X,—Y,#0, X,+y,+z2,#0, x,+y, +z2,#0, X, +Y,+2,#0)
€ R-{0}. Then all solutions of the system (1.1) are periodic with period 6.

Proof: From the system (1.1), it is obtained the following equalities by iteration method:

_ yn—l + 1
n+l T ]
yn (anz + yn—2 + Zn—2) (Xn—l + yn—l + Zn—l)
1
yn+l = !
(Xn—l + yn—l + Zn—l)
; 1 B Yoa B 2
n+l — y
Xoot = Yna Y, (anz + Yoot Zn—2) (Xn—l + Yot Zn—l)
1 1 1 2
ne2 = Yn RN ne2 o, Zn+2: ~ Y, _
(x, +vy,+2,) (X, +Yy,+2,) Xy = Ya (X, +Yy,+2,)
1
Xng = X 7 Yo Yos = X Yoo
(Xn—l + yn—l + anl)
y.(X ,+Y. ,+2 ) 1
Zn+3 —7n n-2 n-2 n-2/7 _ _Z(anl _ ynfl)
yn—l (Xn—l + yn—l + Zn—l)
1 1
n+4:—+xn_yn’ yn+4:Xn_yn’ Zn+4:__—_2(xn_yn)
(X, +Y,+2,) y, (X, +vy,+2,)
Xn+5 = (Xn—l - yn—l) + yn_l ’ yn+5 = yn_l ’
Yo(Xoo + Yoo +2,5) Yo(Xn o + Yoo +2,5)
2yn—l

Zhs = (Xn—l + Yot zn—l) - (Xn—l - yn—l) -
yn(xn—z + Yoot Zn—z)
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Xn+6 = Xn’ yn+6 = yn’ Zn+6 = Zn
Thus all solutions of the system (1.1) are periodic with 6 period.

Theorem 2.2. Suppose that {X.,V,,Z,} are the solutions of the difference equation system (1.2) with initial
values X ;=a, X,=b, x,=¢c, X,=d, y,=p,¥y,=0, Yy, =r, y,=5,2,=t, z,=U,
Z,=V, Z, =W (X,-y,#0, X, -y, #0, Xo— Yo %0, Xa+Yy,+2,#0,
X, +Y,+2,#20, X, +y,+2,#0, X, +Yy,+2,#0) € R{0}. Then all solutions of the system
(1.2) are periodic with period 8.

Proof: From the system (1.2), it is obtained the following equalities by iteration method:

_ yn—l 1
Xn+l - + '
yn (Xn—3 + yn—3 + Zn—S) (anz + yn—z + Zn—Z)
y . = 1
+1 '
" (anz + yn—2 + Zn—2)
, 1 Yoa 2
n+l — - - '
Xn—2 - yn—z yn (Xn—3 + yn—3 + Zn—S) (anz + yn—2 + anz)
1 1 2
Xn+Z:yn+—’ yn+Z:—’ Zn+2:7_yn_—'
(Xn—l +Yoaut Zn—l) (Xn—l +Yoaut Zn—l) Xna = Yna (Xn—l Yot Zn—l)
1 1 1
Xz = + J O B
(Xn—Z + yn—2 + Zn—z) (Xn + yn + Zn) (Xn + yn + Zn)
1 1 2
Zn+3 = - - '
X, =Y, (anz Yoot Zn—Z) (Xn Ty, + Zn)
1
Xn+4 = + (Xn—2 - yn—Z)' yn+4 = (Xn—Z - yn—Z)’
(Xn—l + yn—l + Zn—l)
X .+ +2 1
Zn+4 — yn( n-3 yn—3 n—3) _ _ Z(sz _ yniz)
yn—l (Xn—l + yn—l + Zn—l)
1 1 1
Xnss (Xn—l - yn—l)’ Yois = (Xn—l - yn—l)’ Ly =~ 2(Xn—l - yn—l)

- 4 —
(x,+v,+2,) y, (X, +y,+2,)

Xig = (Xn—Z - yn—Z) + (Xn - Y )’ Yoie = (Xn - Y )1
Zog = (Zyn—z + Zn—z) - 2(Xn - yn)

Y- Y-
Xn+7 = (Xn—l - yn—l) + L ' yn+7 = ! ,
yn (ans + yn—3 + Zn—3) yn (ans + yn—3 + Zn—3)

2y,
Loy = (2 Yot Zn—l) - - )
yn (Xn—s + yn—3 + Zn—3)
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X = Xn’ yn+8 = yn’ Zn+8 = Zn

n+8

Thus all solutions of the system (1.2) are periodic with 8 period.

Theorem 2.3. Suppose that {X,, Y,,Z,} are the solutions of the difference equation system (1.1) with initial
values X,=p, X,=q, X,=r, y,=s, y,=t, y, =u,z,=k, z,=I, z,=m
(Xy=Y.#20, X, -y, #0, X, +y,+2,#0, x,+y, +2,#0, X, +y,+2,#0) € R{0}. In

this case, for n > 0, all solutions of (1.1) are

t 1 1 1 t 2

Xena = + v Yenan =5 v Zenu = - - )

u(p+s+k) (q+t+1) (g+t+D g-t u(p+s+k) (g+t+1)
on2 r+u+m) ™ (r+u+m)’ " r—u (r+u+m)’

u(p+s+k) 1

Xg g = ————+Q —t, =0tz = - —-2(q-t
M (gt +1) a Yonsa = ons t (q+t+1) (-1
X6n+4:;+r_u’ y6n+4:r_u’ ZGn+4:£_;_2(r_u)

(r+u+m) u (r+u+m)
Xens =(Q—)+————, ¥ I — —(Q+t+|)—(Q—t)—L
o+ u(p+s+k) ™ u(p+s+k) u(p+s+Kk)
X6n+6 = r' y6n+6 = U, Z6n+6 =m.

Proof: Let us use the principle of mathematical induction on n. For n=0, it is easy to see. Assume that it is true
for all positive integers n. From the system (1.1), it is obtained the following equalities:

1 t 1
X6n+7 = y6n+5 + = + y
y6n+6(x6n+4 + y6n+4 + Z6n+4) (X6n+5 + y6n+5 + Z6n+5) U(p +S+ k) (q +t + I)
- 1 o
6n+7 - [}
' (X6n+4 + y6n+4 + an+4) (q + t + I)
Z = 1 _ y6n+5 _ 2
6n+7
(Xsnas = Yonis)  Yonis Xonsa + Yonia + Zonia)  (Xonis + Yonis + Zonus)
o1 t 2
T g—t u(p+s+k) (q+t+1)’
1 1 1 1
Xgnsg = Yonse T =u+ = Yenus = = )
snts T Yonie T Zonso (r+u+m) Xenss + Yonio T Zonig  (FHU+M)
1 2 1 2
26n+8 = - y6n+6 - = —1] — ,
Xonis ~ Yonts Xenis T Yenis T Zonss U (r+u+m)
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1
X6n+9 = + X6n+5 - y6n+5 = | +q -t y6n+9 = Xen+5 - y6n+5 =q -1,
Xenis T Yenis T Zonss (q+t+1)
Yo e(Xa 24t Yonia t Zs 4) 1
Zgnsg = - = = e - 2(X6n+5 - y6n+5)
y6n+5 X6n+5 + y6n+5 + Z6n+5
, _u(p+s+k)_ 1 _2(q-1)
6n+9 —
"+ t (q+t+1)
1
Xgns10 = + Xonse ~ Yonis = +r=U, Yenia0 = Xens ~ Yo = —Us
Xense T Yones T Zonss (r+u+m)
1 1 1 1
Z6n+10 = - _2(X6n+6 - yen+s) =————2(r—u)
y6n+6 X6n+6 + y6n+6 + 26n+6 u (r +U+ m)
X = (X _ + y6n+5 _ )+
6n+11 — ( 6n+5 y6n+5) - (q ) k ’
Yonis (Xenia T Yonia T Zonsa) u(p+s+k)
y _ y6n+5 _
6n+11 — - ’
y6n+6(x6n+4 + y6n+4 + 26n+4) U(p +S+ k)
2y6n+5

Zonar = (X6n+5 *+ Yens T Zen+5) - (X6n+5 - y6n+5) -
y6n+6(X6n+4 + y6n+4 + Z6n+4)

2t

Zg . =(Q+t+)—(q—t) - ————
6n+11 (q ) (q ) u(p+5+k)

Xonsiz = Xonse =0 Yoni1z = Yense = Ur Zgniaz = Zonss = M.

Theorem 2.4. Suppose that {X,Y,,Z,} are the solutions of the difference equation system (1.2) with initial
Va|U€S X_3:a,X72=b, X71=C, ond, y_3:p: y,zzq: y,]_:ry yo:57 Z_3:taz,2=u1
zZ,=V, Z, =W (x,-y,=0, X, -y, #0, Xo— Yo %0, Xya+y,+2,#0,

X, +Y,+2,#0, X, +y, +2,#0, X,+Y,+2,#0) €R{0}. In this case, for n=0, all
solutions of (1.2) are

r 1 1 1 r 2
Xgns1 = + v Yena T 57 Zgna = - - )
s(a+p+t) (b+g+u) (b+q+u) b-q s(@a+p+t) (b+q+u)
NRVUUIE SV S SR
o (c+r+v) ™ (c+r+v) " c-r (C+r+v)’
1 1 1 1 1 2
Xgnes = + v Yens =T v Zanes = - - ,
(b+g+u) (d+s+w) (d+s+w) d-s (b+g+u) (d+s+w)
1 s(a+ p+t) 1
Xgng =7 ————+(0-0),  Yg., =(0-0), 74, = - —-2(b-q)
(C+r+v) r (C+r+v)
1 1 1
Xgnis =5 7————<+(C=T), Vg5 =(C—T), Zg5=— -2(c—r)

(d+s+w) s (d+s+w)



Uslu and Seran; Asian J. Math. Comp. Res., vol. 31, no. 3, pp. 1-11, 2024; Article no.AJOMCOR.12235

Xgnre = (O =) +(d —3), Vg6 =(d—5), Zg.c=(20+u)—2(d —5s)
r r 2r
C-rN+——m—, g = Zg, =(2r+v) - —m,

Kones = (600 s(@a+ p+t) Yona s(@a+p+t) ( ) s(@a+ p+t)

Xgnsg = d, Yanie =S Zgng = W.

Proof: Let us use the principle of mathematical induction on n. For n=0, it is easy to see. Assume that it is true
for all positive integers n. From the system (1.2), it is obtained the following equalities:

_ y8n+7 1 r 1
X8n+9 - + )
y8n+8(x8n+5 + y8n+5 + Z8n+5) (X8n+6 + y8n+6 + 8n+6) S(a + p + t) (b + q + U)
yo - 1 1
o (X8n+6 + y8n+6 + 8n+6) (b + q + U)
Zg o = 1 + y8n+7 _ 2
n+
X8n+6 - y8n+6 y8n+8(X8n+5 + y8n+5 + 28n+5) (X8n+6 + y8n+6 + an+6)
1 r 2
Zgnig = + - )
b-gq s(a+p+t) (b+qg+u)
1 1
Xgni10 = Yenis T =S+ )
(X8n+7 + y8n+7 + Z8n+7) (C +r+ V)
yo - 1 1
8n+10 —
’ (X8n+7 + y8n+7 + 8n+7) (C +r+ V)
1 2 1 2
Zgnao =~ Yens — = —S— )
Xgner ~ Yaner (X8n+7 + Yoner t+ 28n+7) c—r (C +r+ V)
1 1 1 1
X8n+ll = + '
(X8n+6 + y8n+6 + z8n+6) (X8n+8 + y8n+8 + 8n+8) (b + q + U) (d +S+ W)
yo - 1 1
ot (X8n+8 + y8n+8 + 8n+8) (d +S+ W)
. 1 1 2
8n+ll — - -
X8n+8 - y8n+8 (X8n+6 + y8n+6 + Z8n+6) (X8n+8 + y8n+8 + Z8n+8)
A S S
M d-s (b+q+u) (d+s+w)’
1 1
Xgni12 = + (X 8n+6 ysn+e) —+(b-0q),
(Xgnez + Yanez + Zgni7) (c+r+v)
y8n+12 = ( 8n+6 y8n+6) (b - q)’
_ y8n+8(X8n+5 + y8n+5 + 28n+5) _ 1 —2(x
Z8n+12 - ( 8n+6 y8n+6)
y8n+7 (X8n+7 + y8n+7 + Z8n+7)
s(a+p+t) 1
Zgniaz = - ~2(b-q)
r (c+r+v)
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X = ! + (Xg 7 — VYarr) = 1 +(c—r)
e (Xsnss + Yanss t Zgnig) o o (d +s+w) ,
Yenus = (x 8n+7 y8n+7) =(c-r),
1 1 1
Zgniz = - —-2(x 8n+7 y8n+7) —-2(c-r)
Yan+s (X8n+8 + Yanis T an+8) 5 (d + S+ W)

Xgni1a = (X8n+6 - y8n+6) + (X8n+8 - y8n+8) =(b-q)+(d-5s)
Ysn14 =( 8n+8 y8n+8) (d - S),
Z8n+14 = (2y8n+6 + ZSn+6) - 2(X8n+8 - y8n+8) = (2q + U) - 2(d - S)

Yan7 r
Xanias = (Xgne7 = Yens7) + = =(Cc-rnN+—m —m,
Yanis (Xonss T Yanes + Zgnss) s(@+ p+t)
_ y8n+7 r
Ygnis = "
y8n+8(X8n+5 + y8n+5 + 8n+5) S(a + p + )
2y 2r
8n+7 _
8n+15 (2y8n+7 8n+7) - - = (2r + V) N
y8n+8(X8n+5 + y8n+5 + Z8n+5) S(a + p + t)
Xgni16 = Xgnig = d, Yeniie = Yanis =S Zgnias = Zgnig = W

Theorem 2.5. The difference equation systems (1.1) and (1.2) have two equilibrium points which are

2 2
(A,A 4-3A J [_A,_A 3A _4}5 I, x1,x1,, where I, |, and |, are some intervals of real

2 2A 2 2A
numbers and A € IR —{0}.

Proof: For the equilibrium points of the systems (1.1) and (1.2), we can write the following equalities

1
x=F(xy z)= y . . y=F(xyz)=——,
y(x+y+2) (X+y+12) (X+y+12)

_ y _ 2
X—y y(X+y+z) (X+y+2z)

Z= F3(X, Y, Z)=

From above equations, we obtain the results
A 4-3A° —~A 3A* -4
Xl lZ = AI_I— H X! lZ = _Al_!— .
(xy,2) ( } (x,y,2) ( > a j
. . . _ . . A 4-3A°
Theorem 2.6. The Jacobian matrix of the system (1.3) in the equilibrium points which are | A, — T ,

~A 3A*—4
- A, —,=———— | follows
2 2A
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- A? — A? - A?
2 2 2
- A? - A? - A?
J(X,y,z)=
(x,y,2) 2 2 2
-4 3A" 4 3A" 3A°
A> 4 A 4 4
Proof: Jacobian matrix at any point (X, Y, z) is
oF,(x,y,z) OF(x,y,z) OF(X,Y,2)
OX oy 0z
J(x, y, z)= oF,(x,y,z) OoF,(x,y,z) OF,(X,Y,2)
OX oy 0z
an(X!y’Z) a|:3(X’ yaz) aFg(Xa ylz)
OX oy 0z
From the system (1.3), we have
-2 -2 -2
(X+y+2)° (x+y+2)° (X+y+2)°
-1 -1 -1
J(x,y,2)= — — —
(X+y+12) (X+y+2) (X+y+12)
-1 3 1 3 3
2 + 2 2 + 2 2
(x=y)" (x+y+z)" (x=y)" (X+y+2)" (X+y+2)

o _ , A 4-3A° ~ A 3A*-4 _ .
For the equilibrium points which are | A, —, = A—, , Jacobian matrix is
2 2A 2 2A
- A’ - A’ - A’
2 2 2
- A? - A? - A?
Jix,y,z)=
(x,y,2) . 2 2
-4 3A* 4 3A* 3A?
T a7
A 4 A 4 4

_A? A2 _ A2
. A A
2 2 2
- A? - A? - A? .
P(A1)=]J(x,y,z)-Al|= -2 =2+
() =[xy, 2)- 2| Z 2 2
—4 3A? 4 3A%) 3A?
—2+ — -2
A 4 A 4 4
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Theroots of P(1): A, =0, A, =1, A, = —1. Thus we can write following results:

a) All roots of P(A) don’t lie inside the open disk |i|< 1. As a result of this, the equilibrium points

2 2
b) Because all roots of P(A) don’t have absolute value greater than one, the equilibrium points

A 4-3A7 —A 3A° -4
X,V,2)=| A,—,—— | and (X,V,Z2)=| — A,——,—— | are notrepeller .
e R T R B P

A 4-3A° - A 3A°-4 :
(x,y,2)= A,—,T and (x,y,2)= —A,—,T are not asymptotically stable.

3. Conclusions

Many different features related to the difference equation systems considered in this study that have not been
examined in this study can be examined.
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