Asian Journal of Advanced Research and Reports

Asian Journal of Advanced Research and Reports

15(2): 37-45, 2021; Article no.AJARR.65179

ISSN: 2582-3248

On G^{β} -Property of G-Metric Spaces

Mubarak AL-Hubaishi1* and Amin Saif2

¹Department of Mathematics, Faculty of Education, University of Saba Region, Mareb, Yemen.
²Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen.

Authors contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJARR/2021/v15i230365

Editor(s):

(1) Dr. Rachid Masrour, University of Cadi Ayyad, Morocco.

Reviewers:

(1) Abd El Fattah El Atik, Tanta University, Egypt.

(2) Ali Farajzadeh, Razi University, Iran.

Complete Peer review History: http://www.sdiarticle4.com/review-history/65179

Received 24 November 2020 Accepted 28 January 2021 Published 10 March 2021

Original Research Article

ABSTRACT

The purpose of this paper is to introduce and investigate weak form of G-open sets in G-metric spaces, namely G^{β} -open sets. The relationships among this form with the other known sets are introduced. We give the notions of the interior operator, the closure operator and frontier operator via G^{β} -open sets.

Keywords: Open set; Metric spaces.

AMS Classification: Primary 54A05, 54E35.

1 INTRODUCTION

The concept of a metric space was introduced by Frechet in 1906, [1]. It has a very important basic role in mathematics and its application. Many mathematical concepts that can be discussed in this space. The first attempt to generalize the ordinary distance function to a distance of three points was introduced by Gahler, [2, 3], in 1993.

K. S. Ha, et al; [4], showed that a 2-metric is not a generalization of the usual notion of a metric. It was mentioned by Gahler, [2], that the notion of a 2-metric is an extension of an idea of ordinary metric and geometrically (x,y,z) represents the area of a triangle formed by the points x,y and z in X as its vertices. But this is not always true.A.Sharma, [5], showed that (x,y,z)=0 for any three distinct points $x,y,z\in R^2$. B. C. Dhage

^{*}Corresponding author: E-mail: mbarkalhbyshy15@gmail.com;

in 1963 introduced a new class of generalized metrics called D-metrics, [3],. However, several errors for fundamental topological properties in a D-metric space were found by Z.Mustafa and B.Sims, [6]. Due to these considerations, Z. Mustafa and B.Sims , [7], proposed a more appropriate notion of a generalized metric space, called G-metric space.

This paper is organized as follows. Section 2 is devoted to some preliminaries. Section 3 introduces the concept of G^{β} -open sets by utilizing the G-open balls. Furthermore, the relationship with the other known sets will be studied. In Section 4 we introduce the concepts of the interior operator, the closure operator and frontier operator via G^{β} -open sets.

2 PRELIMINARIES

Definition 2.1. [1] Let X be any nonempty set. A function $d: X \times X \to [0, \infty)$ is called a metric function on X if it satisfies the following three conditions for all $x, y, z \in X$:

- 1. (positive property) $d(x,y) \ge 0$ with equality if and only if x = y;
- 2. (symmetric property) d(x, y) = d(x, y);
- 3. (triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$.

A pair (X, d), where d is a metric on X is called a metric space.

Definition 2.2. [6] Let X be a nonempty set and \mathbb{R} be the set of real numbers. A function $G: X \times X \times X \to R$ is called a G-metric function on X if it satisfies the following:

- 1. G(x, x, y) > 0 for all $x \neq y \in X$;
- 2. G(x, y, z) = 0 if and only if x = y = z;
- 3. $G(x, x, y) \leq G(x, y, z)$ for every $x, y, z \in X$ with $y \neq z$;
- 4. G(x,y,z) = G(p(x,y,z)) for every $x,y,z \in X$ and for any permutation p of x,y,z;
- 5. $G(x, y, z) \leq G(x, u, u) + G(u, y, z)$ for every $x, y, z, u \in X$.

If G is a G-metric function on X, then the pair (X,G) is called a G-metric space.

Example 2.3. [7] Let (\mathbb{R},d) be the usual metric space. Define G_s by $G_s(x,y,z)=d(x,y)+d(y,z)+d(x,z)$ for all $x,y,z\in\mathbb{R}$. Then it is clear that (\mathbb{R},G_s) is a G-metric space.

Example 2.4. [7] Let $X = \{a, b\}$. Define G on $X \times X \times X$ by G(a,a,a) = G(b,b,b) = 0, G(a|a,b) = 1, G(a,b,b) = 2.

Example 2.5. [7] Let (\mathbb{R}, G) be G-metric space defined by $G(x, y, z) = max\{|x - y|, |y - z|, |z - x|\}$.

Definition 2.6. [8] Let (X,G) be a G-metric space, $x \in X$ and $A \subseteq X$. The open ball with center x and radius ϵ in metric space (X,G) is denoted by $B_G(x,\epsilon)$ and defined by

$$B_G(x,\epsilon) = \{ y \in X | d(x,y,y) < \epsilon \}.$$

The closed ball with center x and radius ϵ in G-metric space (X,G) is denoted by $C_G(x,\epsilon)$ and defined by

$$C_G(x,\epsilon) = \{ y \in X | d(x,y,y) \le \epsilon \}.$$

The set A is called an open set in G-metric space (X,G) if for every $x \in A$, there is $\epsilon > 0$ such that $B_G(x,\epsilon) \subseteq A$. The set A is called closed set in metric space (X,G) if X-A is an open set in G-metric space (X,G).

Theorem 2.7. [8] Every G-open ball $B_G(x,\epsilon), x \in X, \epsilon > 0$ is an open set in X.

Theorem 2.8. [7] Let (X,G) be a G-metric space, then for any $x \in X$ and $\epsilon > 0$, we have.

- (1) If $G(y, x, x) < \epsilon$ then $x, y \in B_G(x, \epsilon)$;
- (2) If $y \in B_G(x, \epsilon)$ then there exists a $\delta > 0$ such that $B_G(y, \delta) \subseteq B_G(x, \epsilon)$.

Definition 2.9. [8] $Cl_G(A)$ is called the G-closure of A if it is the intersection of all G-closed sets containing A.

Definition 2.10. [8] A set U in a G-metric space X, is said to be closed if its complement X - U is G-open.

3 G^{β} -OPEN SETS

Definition 3.1. Let (X,G) be a G-metric space and $A \subseteq X$. A point $x \in X$ is called a G-point of A in G-metric space (X,G) if there is $\delta > 0$ such that for every $y \in B_G(x,\delta)$,

$$B_G(y,\epsilon) \cap G \neq \emptyset \quad \forall \epsilon > 0.$$

 $G^{\beta}(A)$ denotes the set of all G^{β} -points of A in G-metric space (X,G)

Example 3.2. Let (\mathbb{R}, G) be G-metric space defined by $G(x, y, z) = max\{|x - y|, |y - z|, |z - x|\}$. Let A = (0, 2) and B = Q be that set of rational numbers. Note that $G^{\beta}(A) = (0, 2)$ and $G^{\beta}(B) = \mathbb{R}$.

Theorem 3.3. Let (X,G) be any G-metric space and $A,B\subseteq X$. Then

- 1. $G^{\beta}(\phi) = \phi \text{ and } G^{\beta}(X) = X;$
- 2. if $A \subseteq B$ Then $G^{\beta}(A) \subseteq G^{\beta}(B)$;
- 3. $G^{\beta}(A \cap B) \subseteq G^{\beta}(A) \cap G^{\beta}(B)$;
- 4. $G^{\beta}(A) \cup G^{\beta}(B) \subseteq G^{\beta}(A \cup B)$.

Proof. 1. It is clear from the definition ,we get that $G^{\beta}(\phi) = \phi$ and $G^{\beta}(X) = X$.

- 2. Let $A\subseteq B$ and $x\in G^{\beta}(A)$. Then is $\delta>0$ such that for every $y\in B_G(y,\epsilon)\cap A\neq\emptyset$, for all Since $A\subseteq B$. Then $B_G(y,\epsilon)\cap B\neq\emptyset$, for all $\epsilon>0$. That is, $x\in G^{\beta}(B)$. Then $G^{\beta}(A)\subseteq G^{\beta}(B)$.
- 3. Since $A \cap B \subseteq A$. Then by part (2) $G^{\beta}(A \cap B) \subseteq G^{\beta}(A)$. Similar $G^{\beta}(A \cap B) \subseteq G^{\beta}(B)$ Then $G^{\beta}(A \cap B) \subseteq G^{\beta}(A) \cap G^{\beta}(B)$.
- 4. Since $A\subseteq (A\cup B)$. Then by part (2) $G^{\beta}(A)\subseteq G^{\beta}(A\cup B)$. Similar $G^{\beta}(B)\subseteq G^{\beta}(A\cup B)$ Then $G^{\beta}(A)\cup G^{\beta}(B)\subseteq G^{\beta}(A\cup B)$.

Definition 3.4. Let (X,G) be a G-metric space. A subset $A\subseteq X$ is called a G^{β} -open set in G-metric space (X,G) if for every $x\in A$,

$$B_G(x,\epsilon) \cap G^{\beta}(A) \neq \emptyset \quad \forall \epsilon > 0.$$

A subset $A \in X$ is called a G^{β} -closed set in G-metric space (X,G) if X-A is a G^{β} -open set in G-metric space (X,G).

Example 3.5. In Example(3.2), the sets A and B are G^{β} -open sets. Note that any finite sub sets of \mathbb{R} are not G^{β} -open set.

Theorem 3.6. Every G-open set is a G^{β} -open set.

Proof. Let A be any G-open set in G-metric space (X,G). Let $x\in A$ be arbitrary point. Then there is $\delta>0$ such that $B_G(x,\varepsilon)\subseteq G$. For every $y\in B_G(x,\varepsilon)$, $y\in B_G(x,\varepsilon)(y)$ and $y\in A$ for every $\varepsilon>0$. That is, $B_G(y,\varepsilon)\cap G\neq\emptyset$ for every $\varepsilon>0$. Hence A is G^β -open set.

The converse of above theorem need not be true.

Example 3.7. In Example(3.2), note that for the closed interval A = [a, b], $G^{\beta}(A) = (a, b)$. Then it is clear to check that A is a G^{β} -open set. Take x = a or x = b. Note that $x \in A$ but there is no G-open ball with center x contained in A. That is, A is not G-open set in (\mathbb{R}, G) .

The intersection of two G^{β} -open sets no need to be G^{β} -open set. In Example(3.2), set of rational numbers Q is a G^{β} -open set but not G-open set in (\mathbb{R},G) and the set $IR \cup \{q\}$ is a G^{β} -open set in (\mathbb{R},G) , where IR is the set of irrational numbers and q is any rational number, but $Q \cap (IR \cup \{q\}) = \{q\}$ is not G^{β} -open set. That is, the collection of all G^{β} -open sets in G-metric space (X,G) does not form topology on a set X.

The following theorem shows that the intersection of a G-open set and a G^{β} -open set is a G^{β} -open set.

Theorem 3.8. The intersection of a G-open set and a G^{β} -open set is a G^{β} -open set.

Proof. Let A be G-open set and B be G^{β} -open set in G-metric space in (X,G). Let $x\in A\cap B$ be arbitrary point. Then $x\in A$ and $x\in B$. Then there are $\delta_1>0$ and $\delta_2>0$ such that $B_G(x,\delta_1)\subseteq A$ and for every $y\in B_G(x,\delta_2)$, $B_G(y,\varepsilon)\cap B\neq\emptyset$ for every $\varepsilon>0$. Take $\delta=\min\{\delta_1,\delta_2\}>0$. Then $B_G(x,\delta)\subseteq A$ and for every $y\in B_G(x,\delta)$, $B_G(y,\varepsilon)\cap B\neq\emptyset$ for every $\varepsilon>0$. Now for every $y\in B_G(x,\delta)$ and since A is G-open set, then there is $\varepsilon_y>0$ such that $B_G(y,\varepsilon_y)\subseteq A$ and $B_G(y,\min\{\delta_1,\delta_2\})\cap B\neq\emptyset$. Since $B_G(y,\min\{\delta_1,\delta_2\})\cap B\subseteq B_G(y,\varepsilon)\cap A\cap B$, then $B_G(y,\varepsilon)\cap (A\cap B)\neq\emptyset$ for every $\varepsilon>0$. That is $A\cap B$ is G-open set. Hence $x\in G^{\beta}(A\cap B)$. Then $B_G(y,\varepsilon)\cap G^{\beta}(A\cap B)\neq\emptyset$ for all $\varepsilon>0$. There for $A\cap B$ is G^{β} -open set.

Theorem 3.9. The union of any family of G^{β} -open sets is G^{β} -open set.

Proof. Let H_{λ} be a G^{β} -open in G-metric space (X,G) for all $\lambda \in \Delta$. Let $x \in \cup_{\lambda \in \Delta} H_{\lambda}$ be an arbitrary point. Then there is at least $\lambda_0 \in \Delta$ such that $x \in H_{\lambda_0}$. Since H_{λ_0} is a G^{β} -open set then $B_G(x,\varepsilon) \cap G^{\beta}(H_{\lambda_0}) \neq \emptyset$ for all $\varepsilon > 0$. Hence by Theorem (3.3), $G^{\beta}(H_{\lambda_0}) \subseteq G^{\beta}(\cup_{\lambda \in \Delta} H_{\lambda})$. Hence $B_G(x,\varepsilon) \cap G^{\beta}(\cup_{\lambda \in \Delta} H_{\lambda}) \neq \emptyset$ for all $\varepsilon > 0$. That is $\cup_{\lambda \in \Delta} H_{\lambda}$ is G^{β} -open set.

4 G^{β} -OPEN OPERATORS

In this section, we define the interior operator, the closure operator and frontier operator via G^{β} -open sets.

Definition 4.1. Let (X,G) be a G-metric space and $A\subseteq X$. The G-closure operator of A is denoted by $Cl_G^\beta(A)$ and defined by

$$Cl_G^{\beta}(A) = \bigcap \{ H \subseteq X : A \subseteq H \text{ and } H \text{ is } G^{\beta}\text{-closed set} \}.$$

The G-interior functor of A is denoted by $Int_G^{\beta}(A)$ and defined by

$$Int_G^{\beta}(A) = \bigcup \{ H \subseteq X : H \subseteq A \text{ and } H \text{ is } G^{\beta}\text{-open set} \}.$$

Remark 4.2.

- 1. By Theorem(3.9), $Cl_G^{\beta}(A)$ is a G^{β} -closed set and $Int_G^{\beta}(A)$ is G^{β} -open set in G-metric space (X,G).
- 2. For a G-metric space (X,G) and $A\subseteq X$, it is clear from the definition of $Cl_G^\beta(A)$ and $Int_G^\beta(A)$ that $A\subseteq Cl_G^\beta(A)$ and $Int_G^\beta(A)\subseteq A$.

Theorem 4.3. For a G-metric space (X,G) and $A\subseteq X$, $Cl_G^\beta(A)=A$ if and only if A is a G^β -closed set.

Proof. Let $Cl_G^\beta(A)=A$. Then from definition of $Cl_G^\beta(A)$ and Theorem(3.9), $Cl_G^\beta(A)$ is a G^β -closed set and A is a G^β -closed set. Conversely, we have $A\subseteq Cl_G^\beta(A)$ by Remark(4.2). Since A is a G^β -closed set, then it is clear from the definition of $Cl_G^\beta(A)$, $Cl_G^\beta(A)\subseteq A$. Hence $A=Cl_G^\beta(A)$. \square

Theorem 4.4. For a G-metric space (X,G) and $A\subseteq X$, and $Int_G^\beta(A)=A$ if and only if A is a G^β -open set.

Proof. Let A be G^{β} -open set. Then for all $x \in A$, we have $x \in A \subseteq A$. That is, $A \subseteq Int_G^{\beta}(A)$. Then $A = Int_G^{\beta}(A)$ from Remark(4.2). The converse is trivial.

Theorem 4.5. For a G-metric space (X,G) and $A\subseteq X$, $x\in Cl_G^\beta(A)$ if and only if for all G^β -open set B containing $x,B\cap A\neq\emptyset$.

Proof. Let $x \in Cl_G^{\beta}(A)$ and B be any G^{β} -open set containing x. If $B \cap A = \emptyset$ then $A \subseteq X - B$. Since X - B is a G^{β} -closed set containing A, then $Cl_G^{\beta}(A) \subseteq X - B$ and so $x \in Cl_G^{\beta}(A) \subseteq X - B$. Hence this is contradiction, because $x \in B$. Therefore $B \cap A \neq \emptyset$.

this is contradiction, because $x \in B$. Therefore $B \cap A \neq \emptyset$. Conversely, Let $x \notin Cl_G^\beta(A)$. Then $X - Cl_G^\beta(A)$ is a G-open set containing x. Hence by hypothesis, $[X - Cl_G^\beta(A)] \cap A \neq \emptyset$. But this is contradiction, because $X - Cl_G^\beta(A) \subseteq X - A$. \square

Theorem 4.6. For a G-metric space (X,G) and $A\subseteq X, x\in Int_G^{\beta}(A)$ if and only if there is G^{β} -open set B such that $x\in B\subseteq A$.

Proof. Let $x \in Int_G^{\beta}(A)$ and take $B = Int_G^{\beta}(A)$. Then by Theorem(4.5) and definition of $Int_G^{\beta}(A)$ we get that B is a G^{β} -open set and by Remark(4.2), $x \in B \subseteq A$. Conversely, let there is G^{β} -open set B such that $x \in B \subseteq A$ Then by definition of $Int_G^{\beta}(A)$, $x \in B \subseteq Int_G^{\beta}(A)$.

Theorem 4.7. For a G-metric space (X, G) and $A, B \subseteq X$, the following hold:

- 1. If $A \subseteq B$ then $Cl_G^{\beta}(A) \subseteq Cl_G^{\beta}(B)$;
- 2. $Cl_G^{\beta}(A) \cup Cl_G^{\beta}(B) \subseteq Cl_G^{\beta}(A \cup B);$
- 3. $Cl_G^{\beta}(A \cap B) \subseteq Cl_G^{\beta}(A) \cap Cl_G^{\beta}(B);$
- 4. $Cl_G^{\beta}(A) \subseteq Cl_G(A)$.

Proof. 1. Let $x \in Cl_G^{\beta}(A)$. Then by Theorem(4.5), for all G^{β} -open set C containing $x, C \cap A \neq \emptyset$. Since $A \subseteq B$ then $C \cap B \neq \emptyset$. Hence $x \in Cl_G^{\beta}(B)$. That is, $Cl_G^{\beta}(A) \subseteq Cl_G^{\beta}(B)$.

- 2. Since $A\subseteq A\cup B$ and $B\subseteq A\cup B$, then by part(1), $Cl_G^\beta(A)\subseteq Cl_G^\beta(A\cup B)$ and $Cl_G^\beta(B)\subseteq Cl_G^\beta(G\cup B)$. Hence $Cl_G^\beta(G)\cup Cl_G^\beta(B)\subseteq Cl_G^\beta(A\cup B)$.
- 3. Since $A\cap B\subseteq A$ and $A\cap B\subseteq B$, then by part(1), $Cl_G^\beta(A\cap B)\subseteq Cl_G^\beta(A)$ and $Cl_G^\beta(A\cap B)\subseteq Cl_G^\beta(B)$. Hence $Cl_G^\beta(A\cap B)\subseteq Cl_G^\beta(A)\cap Cl_G^\beta(B)$.

4. It is clear from Theorem(4.5) and from every G-open set is G^{β} -open set.

In the above theorem $Cl_G^\beta(A \cup B) \neq Cl_G^\beta(A) \cup Cl_G^\beta(B)$ as it is shown in the following example.

Example 4.8. Let (\mathbb{R}, G) be G-metric space, where

$$G(x, y, z) = max\{|x - y|, |y - z|, |z - x|\}$$

and (\mathbb{R},d) is usual metric space. Let A=IR and $B=Q-[\{2\}]$, where Q is the set of rational numbers, IR is the set of irrational numbers and 2 is any rational number. Since A and B are G^{β} -closed sets in \mathbb{R} . Then $Cl_G^{\beta}(A) \cup Cl_G^{\beta}(B) = A \cup B = \mathbb{R} - \{2\}$. If $\mathbb{R} - \{2\}$ is G^{β} -closed set in \mathbb{R} then $\{2\}$ is G^{β} -open set but $\{2\}$ is not G^{β} -open set and this contradiction. Hence $\mathbb{R} - \{2\}$ is not G^{β} -closed set in \mathbb{R} . Since $\mathbb{R} - \{2\} \subseteq Cl_G^{\beta}(\mathbb{R} - \{2\})$ then

$$Cl_G^{\beta}(A \cup B) = Cl_G^{\beta}(\mathbb{R} - \{2\}) = \mathbb{R}.$$

Theorem 4.9. For a G-metric space (X,G) and $A,B\subseteq X$, the following hold:

- 1. If $A \subseteq B$ then $Int_G^{\beta}(A) \subseteq Int_G^{\beta}(B)$;
- 2. $Int_G^{\beta}(A) \cup Int_G^{\beta}(B) \subseteq Int_G^{\beta}(A \cup B);$
- 3. $Int_G^{\beta}(A \cap B) \subseteq Int_G^{\beta}(B) \cap Int_G^{\beta}(B);$
- 4. $Int_G(A) \subseteq Int_G^{\beta}(A)$.

Proof. 1. Let $x \in Int_G^{\beta}(A)$. Then by Theorem(4.6), there is G^{β} -open set C such that $x \in C \subseteq A$ Since $A \subseteq B$ then $x \in C \subseteq B$. Hence $x \in Int_G^{\beta}(B)$. That is, $Int_G^{\beta}(A) \subseteq Int_G^{\beta}(B)$.

- 2. Since $A\subseteq A\cup B$ and $B\subseteq A\cup B$, then by part(1), $Int_G^\beta(A)\subseteq Int_G^\beta(A\cup B)$ and $Int_G^\beta(B)\subseteq Int_G^\beta(A\cup B)$. Hence $Cl_G^\beta(A)\cup Int_G^\beta(B)\subseteq Int_G^\beta(A\cup B)$.
- 3. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, then by part(1), $Int_G^{\beta}(A \cap B) \subseteq Int_G^{\beta}(A)$ and $Int_G^{\beta}(A \cap B) \subseteq Int_G^{\beta}(B)$. Hence $Int_G^{\beta}(A \cap B) \subseteq Int_G^{\beta}(B)$.
- 4. It is clear from Theorem(4.5) and from every G-open set is G^{β} -open set.

In the last theorem $Int_G^{\beta}(A \cap B) \neq Int_G^{\beta}(A) \cap Int_G^{\beta}(B)$ as it is shown in the following example.

Example 4.10. In Example(4.8), take $A=Q\cup\{\sqrt{2}\}$ and B=IR, where Q is the set of rational numbers, IR is the set of irrational numbers and $\sqrt{2}$ is any irrational number. Since A and B are G^{β} -open sets in \mathbb{R} . Then $Int_G^{\beta}(A)\cap Int_G^{\beta}(B)=A\cap B=(Q\cup\{\sqrt{2}\})\cap IR=\{\sqrt{2}\}$. Since $\{\sqrt{2}\}$ is not G^{β} -open set and $Int_G^{\beta}(\{\sqrt{2}\})\subseteq\{\sqrt{2}\}$ then $Int_G^{\beta}(A\cap B)=Int_G^{\beta}(\{\sqrt{2}\})=\emptyset$.

Theorem 4.11. For a G-metric space (X, G) and $G \subseteq X$, the following hold:

- 1. $Int_G^{\beta}(X A) = X Cl_G^{\beta}(A);$
- 2. $Cl_G^{\beta}(X A) = X Int_G^{\beta}(A)$.

Proof. 1. Since $A\subseteq Cl_G^\beta(A)$, then $X-Cl_G^\beta(A)\subseteq X-A$. Since $Cl_G^\beta(A)$ is a G^β -closed set then $X-Cl_G^\beta(A)$ is a G-open set. Then

$$X - Cl_G^{\beta}(A) = Int_G^{\beta}[X - Cl_G^{\beta}(A)] \subseteq Int_G^{\beta}(X - A).$$

For the other side, let $x\in Int_G^{\beta}(X-A)$. Then there is G^{β} -open set C such that $x\in C\subseteq X-A$. Then X-C is a G^{β} -closed set containing A and $x\notin X-C$. Hence $x\notin Cl_G^{\beta}(G)$, that is, $x\in X-Cl_G^{\beta}(A)$.

2. Since $Int_G^{\beta}(A)\subseteq A$, then $X-A\subseteq X-Int_G^{\beta}(A)$. Since $Int_G^{\beta}(A)$ is a G^{β} -open set then $X-Int_G^{\beta}(A)$ is a G^{β} -closed set. Then

$$Cl_G^{\beta}(X-A) = Cl_G^{\beta}[X-Int_G^{\beta}(A)] = X-Int_G^{\beta}(A).$$

For the other side, let $x \notin Cl_G^\beta(X-A)$. Then by Theorem(4.5), there is a G^β -open set C containing x such that $C \cap (X-A) = \emptyset$. Then $x \in C \subseteq A$, that is, $x \in Int_G^\beta(A)$. Hence $x \notin X - Int_G^\beta(A)$. Therefore $X - Int_G^\beta(A) \subseteq Cl_G^\beta(X-A)$.

Theorem 4.12. For a subset $A \subseteq X$ of G-metric space (X, G) the following hold:

- 1. If B is a G-open set in X then $Cl_G^{\beta}(A) \cap B \subseteq Cl_G^{\beta}(A \cap B)$;
- 2. If B is a G-closed set in X then $Int_G^{\beta}(A \cup B) \subseteq Int_G^{\beta}(A) \cup B$.

Proof. 1. Let $x \in Cl_G^\beta(A) \cap B$. Then $x \in Cl_G^\beta(A)$ and $x \in B$. Let D be any G^β -open set in (X,G) containing x. By Theorem(3.8), $D \cap B$ is G^β -open set containing x. Since $x \in Cl_G^\beta(A)$ then by Theorem(4.5), $(D \cap B) \cap A \neq \emptyset$. This implies, $D \cap (B \cap A) \neq \emptyset$. Hence by Theorem(4.5), $x \in Cl_G^\beta(A \cap B)$. That is, $Cl_G^\beta(A) \cap B \subseteq Cl_G^\beta(A \cap B)$.

2. Since B is a G-closed set X then by the part(1) and Theorem(4.11),

$$\begin{split} X - [Int_G^\beta(A) \cup B] &= [X - Int_G^\beta(A)] \cap [X - B] \\ &= [Cl_G^\beta(X - A)] \cap [X - B] \\ &\subseteq Cl_G^\beta[(X - A) \cap (X - B)] \\ &= Cl_G^\beta(X - (A \cup B)) \\ &= X - (Int_G^\beta(A \cup B)). \end{split}$$

Hence $Int_G^{\beta}(A \cup B) \subseteq Int_G^{\beta}(A) \cup B$.

Theorem 4.13. For a G-metric space (X,G) and $A\subseteq X$, $x\in Cl_G(A)$ if and only if for all $\varepsilon>0$, $B_G(x,\varepsilon)\cap A\neq\emptyset$.

Proof. Let $x \in Cl_G(A)$ and $\varepsilon > 0$. If $B_G(x,\varepsilon) \cap A = \emptyset$ then $A \subseteq X - B_G(x,\varepsilon)$. Since $X - B_G(x,\varepsilon)$ is a G-closed set containing A, then $Cl_G(A) \subseteq X - B_G(x,\varepsilon)$ and $x \in Cl_G(A) \subseteq X - B_G(x,\varepsilon)$. Hence this is contradiction, because $x \in B_G(x,\varepsilon)$. Therefore $B_G(x,\varepsilon) \cap A \neq \emptyset$.

Conversely, Let $x \notin Cl_G(A)$. Then $X - Cl_G(A)$ is a G-open set containing x. Then there is $\varepsilon > 0$ such that $B_G(x,\varepsilon) \subseteq X - Cl_G(A)$ Hence by hypothesis, $B_G(x,\varepsilon) \cap A \neq \emptyset$. But this is contradiction, because $B_G(x,\varepsilon) \subseteq X - Cl_G(A) \subseteq X - A$.

For a subset A of G-metric space (X,G) the G-frontier operator of A is defined by

$$\Gamma_G^{\beta}(A) = Cl_G^{\beta}(A) - Int_G^{\beta}(A).$$

Theorem 4.14. For a subset $A \subseteq X$ of G-metric space (X, G), the following hold:

- 1. $Cl_G^{\beta}(A) = \Gamma_G^{\beta}(A) \cup Int_G^{\beta}(A);$
- 2. $\Gamma_G^{\beta}(A) \cap Int_G^{\beta}(A) = \emptyset;$
- 3. $\Gamma_G^{\beta}(A) = Cl_G^{\beta}(A) \cap Cl_G^{\beta}(X A)$.

Proof. 1. Note that

$$\begin{split} \Gamma_G^\beta(A) \cup Int_G^\beta(A) &= (Cl_G^\beta(A) - Int_G^\beta(A)) \cup Int_G^\beta(A) \\ &= [Cl_G^\beta(A) \cap (X - Int_G^\beta(A))] \cup Int_G^\beta(A) \\ &= [Cl_G^\beta(A) \cup Int_G^\beta(A)] \cap [(X - Int_G^\beta(A)) \cup Int_G^\beta(A)] \\ &= Cl_G^\beta(A) \cap X = Cl_G^\beta(A). \end{split}$$

- 2. It is clear from the definition of $\Gamma_G^{\beta}(A)$.
- 3. By Theorem(4.11),

$$\begin{array}{lcl} \Gamma_G^\beta(A) & = & Cl_G^\beta(A) - Int_G^\beta(A) = Cl_G^\beta(A) \cap (X - Int_G^\beta(A)) \\ & = & Cl_G^\beta(A) \cap Cl_G^\beta(X - A). \end{array}$$

Corollary 4.15. For a subset $A \subseteq X$ of G-metric space (X, G), $\Gamma_G^{\beta}(A)$ is G^{β} -closed set in (X, G).

Proof. By Theorem(4.9) and the part(3) of the last theorem.

Theorem 4.16. For a subset $A \subseteq X$ of G-metric space (X, G), the following hold:

- 1. A is a G^{β} -open set if and only if $\Gamma_G^{\beta}(A) \cap A = \emptyset$;
- 2. A is a G^{β} -closed set if and only if $\Gamma_G^{\beta}(A) \subseteq A$;
- 3. A is both G^{β} -open set and G^{β} -closed set if and only if $\Gamma_G^{\beta}(A) = \emptyset$.

Proof. 1. Let A be a G^{β} -open set. Then $Int_G^{\beta}(A) = A$. Then by Theorem(4.14),

$$\Gamma_G^{\beta}(A) \cap A = \Gamma_G^{\beta}(A) \cap Int_G^{\beta}(A) = \emptyset$$

Conversely, suppose that $\Gamma_G^{\beta}(A) \cap A = \emptyset$. Then

$$A - Int_G^{\beta}(A) = [A \cap Cl_G^{\beta}(A)] - [A \cap Int_G^{\beta}(A)]$$
$$= A \cap (Cl_G^{\beta}(A) - Int_G^{\beta}(A)) = A \cap \Gamma_G^{\beta}(A) = \emptyset.$$

That is, $Int_G^{\beta}(A) = A$. Hence A is a G^{β} -open set.

2. Let A be a G^{β} -closed set. Then $Cl_G^{\beta}(A) = A$. Then

$$\Gamma_G^{\beta}(A) = Cl_G^{\beta}(A) - Int_G^{\beta}(A) = A - Int_G^{\beta}(A) \subseteq A.$$

Conversely, suppose that $\Gamma_G^{\beta}(A) \subseteq A$. Then by Theorem(4.14),

$$Cl_G^{\beta}(A) = Int_G^{\beta}(A) \cup \Gamma_G^{\beta}(A) \subseteq Int_G^{\beta}(A) \cup A \subseteq A.$$

That is, $Cl_G^{\beta}(A) = A$. Hence A is G^{β} -closed set.

3. Let A be both G^{β} -closed set and G^{β} -open set. Then $Cl_G^{\beta}(A)=A=Int_G^{\beta}(A)$. Then

$$\Gamma_G^{\beta}(A) = Cl_G^{\beta}(A) - Int_G^{\beta}(A) = A - A = \emptyset.$$

Conversely, suppose that $\Gamma_G^\beta(A)=\emptyset$. Then $Cl_G^\beta(A)-Int_G^\beta(A)=\emptyset$. Since $Int_G^\beta(A)\subseteq Cl_G^\beta(A)$ then $Cl_G^\beta(A)=Int_G^\beta(A)$. Since $Int_G^\beta(A)\subseteq A\subseteq Cl_A^\beta(A)$ then

$$Cl_G^{\beta}(A) = A = Int_G^{\beta}(A).$$

That is, $Cl_G^{\beta}(A) = A$. Hence A is both G^{β} -closed set and G^{β} -open set.

5 CONCLUSION

sets in G-metric spaces.

As we noted that the G^{β} -open set is a weak form of open set in G-metric space, also the reader can give the notion of the continty property via G^{β} -open sets in G-metric spaces. The reader also can introduce sepertion axioms connectedness and compactness properties by using G^{β} -open

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

[1] Frechet M. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo

- Matematico di Palermo. 1906;22(1):1-74.
- [2] Gahler S. Zur geometric 2-metrische raume. Rev. Roum. Math. Pures et Appl. 1966;11: 664-669.
- [3] Gahler S. 2-metrische raume und ihre topologische. Struktur Math. Nachr. 1963;26:115-148.
- [4] Ha KS, Cho YJ, White A. Strictly convex and 2-convex 2-normed spaces. Math. Japonica. 1988;33(3):375-384.
- [5] Sharma AK. A note on fixed points in 2-metric spaces. Indian J. Pure Appl. Math. 1980;11(2):1580-1583.
- [6] Mustafa Z, Sims B. Some remarks concerning D-metric spaces. Proceedings of the International Conferences on Fixed Point Theory and Applications. Valencia (Spain). 2003;189-198.
- [7] Mustafa Z, Sims B. A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis. 2006;7:289-297.
- [8] Dhanorkar GA. Applying G-metric space for cantor's intersection and Baire's category theorem. Asian Research Journal of Mathematics. 2017;3(2):1-8.

© 2021 AL-hubaishi and Saif; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/65179