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ON GRAPH INVARIANTS OF OXIDE NETWORK

MUHAMMAD IMRAN, ASIMA ASGHAR, ABDUL QUDAIR BAIG!

ABSTRACT. The application of graph theory in chemical and molecular
structure research far exceeds people’s expectations, and it has recently
grown exponentially. In the molecular graph, atoms are represented by
vertices and bonded by edges. In this report, we study the several Zagreb
polynomials and Redefined Zagreb indices of Oxide Network.

Index Terms: Zagreb index; Randi¢ index; polynomial; degree; graph.

1. Introduction

Many studies have shown that there is a strong intrinsic link between the chemi-
cal properties of chemical compounds and drugs (such as boiling point and melt-
ing point) and their molecular structure. The topological index defined on the
structure of these chemical molecules can help researchers better understand the
physical characteristics, chemical reactivity and biological activity. Therefore,
the study of topological indices of chemical substances and chemical structures
of drugs can make up for the lack of chemical experiments and provide theo-
retical basis for the preparation of drugs and chemical substances. In the past
two decades, a large number of graph invariants (topological indices) have been
defined and used for correlation analysis in theoretical chemistry, pharmacology,
toxicology and environmental chemistry.

The first and second Zagreb indices are one of the oldest and most well-known
topological indices defined by Gutman in 1972 and are given different names in
the literature, such as the Zagreb group index, Sag. Loeb group parameters and
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the most common Zagreb index. The Zagreb index is one of the first indices in-
troduced and has been used to study molecular complexity, chirality, ZE isomers
and heterogeneous systems. The Zagreb index shows the potential applicability
of deriving multiple linear regression models. The first and the second Zagreb
indices [I] are defined as

Ml(G) = H (du+dv)7

ueE(G)
H du X d'u.7
uwveE(G)
For details see [2]. Considering the Zagreb indices, Fath-Tabar ([3]) defined first
and the second Zagreb polynomials as

Ml(GaI) = Z Idu—i_duv
uwveE(G)

M(G,x) = Z gu-dv,

uwveE(G)

and

The properties of M; (G, z) and M7 (G, x) for some chemical structures have been
studied in the literature [4, 5]. After that, in [6], the authors defined the third
Zagreb index

MB(G) = Z (du - dv)u

weEE(Q)

M3(G,x) = Z ge—dv,

uwveE(G)

and the polynomial

In the year 2016, [7] following Zagreb type polynomials were defined
MGy = 3D el

weEE(Q)

Ms5(G,x) = Z gt (dutdy)

wweE(G)
b G (E xad +bd,
a §

weE(Q)
M (Goa)= 3 b,
weE(Q)

Ranjini et al. [§] redefined the Zagreb indices, i.e, the redefined first, second and
third Zagreb indices of graph G. These indicators appear as

dy + d,
ReZG\(G) = Y R
weEE(Q) s
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dy.dy
dy +dy’

ReZGy(G) = Y
weE(Q)

and

ReZGs(G) = Y (du+dy)(dy.dy).
weEE(Q)

For details about topological indices and its applications we refer [9] 10, 1T, 12|
13, M4, (15, 06} I7]. In this paper we aim to compute Zagreb polynomials and
redefined Zagreb indices of Oxide networks shown in Figure 1.

2. Main Results

In this section we give our main computational results.

Figure 1. Oxide network.

In this section, we present our computational results.

Theorem 2.1. Let OX,, be the Ozide network. Then

(1) M3(0X,,z) = 12nz? + (18n? — 12),

(2) My(OXp,z) = 12n2'2 + (18n? — 12)232,

(3) M5(0OXp,z) = 12n2** + (18n? — 12)232,

(4) Moy (OX,,x) = 12nz20H4 4 (1802 — 12)z4(@+0),

(5) M, ,(0X,,x) = 12nzTOEFE) 4 (1807 — 12)g(4Ta)(4F),

Proof. Let OX,, be the oxide network. It is clear that OX,, has two partitions
of vertex set i.e, Vi = {v € V(0X,,) : d, =2} and Vo = {v € V(0X,,) : d, = 4}.
The edge set of OX,, has following two partitions,
Ei=Eyy={e=uwve E(0OX,):d, =2,d, =4},
Ei=E;s={e=uwv e E(0OX,):d, =4,d, =4}.
Such that
| By(OX,) |= 120,

| B2(0X,) |= 18n% — 12n.
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weEE (0X,) w€EF(0X,,)

= | B2(0Xy,) | 2°+ | E2(0X,) |
= 12nz® + (18n° — 12n).

Z Idu (du+dy)

weE(0OX,)
Z $2(2+4) + Z x4(4+4)
uvE FEq (OXn) UUEEZ(OXH)

| B2(0X,,) | 224 | E2(0X,,) | 2
12nz'? + (18n” — 12n) 2.

Z v (dutdy)

weE(0X,,)
Z $4(2+4) + Z x4(4+4)
uvEFq (OXn) UUEEZ(OXH)

| B2(0X,) | 2*4 | B2(0X,) | 2%
12n2** + (18n* — 12n) | 2°2.

§ : xadu—i-bdv

weE(0OXy)
E $2a+4b + E I2a+4b
weEFR; (0X,) w€EFE(0X,)

| Ez(OXn) | $2a+4b+ | Eg(OXn) | x2a+4b
12nz(2a+40) 4 (18112 — 12n) pHath),

Z x(dqua)(dUer)

wweE(0Xy,)

Z p2Ha) (D) | Z L (4+a) (4+D)

weE; (0Xy) wveE2(0Xy)

| E2(0X,,) | 2(2Ta)(4+0) 4 | B2(0X,) | p(4+a)(4+b)
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= 12pgFOUEH) 4 (187 — 12n) g (1T,

O
Theorem 2.2. Let OX,, be the Ozide network. Then,
(1) ReZG1(0X,,) = 9n? + 3n,
(2) ReZG1(0X,) = 36n* — 8n,
(3) ReZG3(0X,,) = 2304n> — 960n.
Proof. (1)
dy + d,
ReZ n) =
eZG1(0X,,) > T
wweE(0Xy,)
= §(12 )+3(18 2 _12n)
= 4 n B n n
= 9n2% —3n.
(2)
dy.dy
Z X,) =
ReZG(0Xy,) > o
wweE(0Xy,)
4
= g(12n) +2(18n% — 12n)
= 36n° - 8n.
(3)
ReZG5(0X,) = > (du+dy)(du.dy)
weFR(0X,,)
= 48(12n) + 128(18n* — 12n)
= 2304n° — 960n.
O
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