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1 Introduction 

Lasers have become indispensable tools in 3D 

microscopy, e.g. laser scanning microscopy [1, 2], multi-

photon microscopy [3, 4], light sheet microscopy [5, 6], 

or super-resolution microscopy  including single 

molecule localization (SMLM) [7, 8], stimulated 

emission depletion (STED) [9] and structured 

illumination microscopy (SIM) [10, 11]. In addition, 

focused laser beams have been applied successfully for 

micromanipulation of cells or tissues via optical 

tweezers [12, 13], laser scissors [14], or laser-assisted 

optoporation using continuous-wave (cw) [15, 16] or 

pulsed light [17, 18]. Interaction is due to a sufficiently 

large number of photons each with an energy 

W = h  c0/ (with Planck’s constant h = 6.626  10–34 Js 

and the velocity of light c0 = 3.00  108 m/s) as well as a 

momentum p = h/. In contrast to the photon energy of 

about 4  10–19 J (for  = 500 nm), its momentum around 

1.3  10–27 Ns is rather small. This should be considered 

for optical tweezers using a transfer of momentum from 

laser photons to a cell or tissue sample. Fig. 1 shows how 

a transparent particle, e.g. cell, can be moved towards the 

focus of a laser beam by deflection of incident photons, 

where it can be localized and further manipulated (in 

contrast, upon reflection or absorption of photons this 

cell would just be pushed into forward direction). Easy 

calculations show that for putting a pressure of 1 Pa on a 

surface of 1 µm² a local force of 1 pN (Pico-Newton) 

corresponding to about 1015 laser photons per second is 

needed, and the question arises whether the applied 

energy might be tolerable for living cells. 

Previously we determined maximum non-phototoxic 

light doses, which can be applied to living cells upon 

whole cell illumination [19]. These doses increased with 

wavelength from about 25 J/cm² at 375 nm to 200 J/cm² 

at 633 nm (if cells were loaded with a dye or transfected 

with a fluorescent protein, the doses were  10 J/cm²). 

Corresponding photon numbers applied to native cells at 

 = 633 nm were about 5  1017 per cm² or 

5  109 per µm², so that the question arises again whether 

application of laser tweezers would be phototoxic to 

living cells.  

 

Fig. 1 Forces in an optical tweezer system. Photons a 

(from the center of a focused laser beam) and photons b 

(from a peripheral part of the laser beam) are deflected 

by a transparent particle, e.g. cell. If the number of 

photons b is smaller than that of photons a, the sum of 

repulsive forces Fa and Fb is directed towards the focus of 

the laser beam. 

2 Dose and Wavelength Dependence 

Applications of optical tweezers, e.g. for measuring 

motility forces of cells [20, 21], macromolecules [22, 23], 

or organelles [24], for micromanipulation of cells or 

chromosomes [25, 26] as well as for sperm insertion into 

oocytes through a previously drilled hole [27, 28] have 

been reported since the early 1990s. Red or near infrared 

laser light was considered to be most efficient for 
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application of a large number of laser photons without 

major cell damage. Cell damage was related to one-

photon, but also to two-photon absorption by molecules of 

a cell with subsequent cytotoxic reactions at irradiances 

above 1540 MW/cm² (7501064 nm) [29]. In addition to 

photochemical reactions [29], photo-thermal reactions also 

appeared to be involved [30]. Liang et al. performed more 

detailed wavelength dependent studies of cell viability 

and found highest survival rates (percent of cells capable 

of clonal growth) at 800850 nm and 9501000 nm. 

Values were determined at an irradiance of 26 MW/cm² 

or 52 MW/cm² and an irradiation time of 3, 5, or 10 min, 

thus corresponding to light doses between 4.68 and 

31.2 GJ/cm² [31]. Schneckenburger et al. specified light 

doses up to 1 GJ/cm² (8.3 MW/cm² applied within 120 s) 

applied around 670 nm (high power laser diode) as well 

as at 1064 nm (Nd:YAG laser), at which cell viability 

was maintained, i.e. the percentage of colony formation 

(“plating efficiency”) was reduced by less than 10% in 

comparison with non-irradiated controls [32]. At these 

wavelengths one-photon absorption by water and most 

cellular pigments as well as two-photon absorption by the 

coenzymes nicotinamide adenine dinucleotide (NADH) 

and flavin mono- or dinucleotide were rather low. This 

proves that non-phototoxic light doses used for laser 

tweezers exceeded non-phototoxic light doses applied to 

whole cells [19] by several orders of magnitudes. 

Reasons for this may be an appropriate wavelength of 

irradiation as well as the fact that light doses applied to a 

tiny spot of about 1 µm diameter are much less 

phototoxic than the same light doses applied to whole 

cells. 

The question arises whether cells loaded with specific 

pigments, e.g. hemoglobin, are more sensitive to laser 

treatment. This holds in particular for red blood cells, 

which are an object of numerous investigations with laser 

tweezers, e.g. in aging research [33, 34] or in studies of 

diseases [3537]. So far, there is no evidence in the 

literature that blood cells might be more sensitive to laser 

irradiation than other cell species. This appears 

understandable, since absorption by hemoglobin is most 

pronounced in the blue and red spectral range, but is very 

low at wavelengths commonly used for laser tweezers 

( = 7501100 nm). Furthermore, in contrast to free 

porphyrin molecules hemoglobin is not or only very little 

phototoxic. 

3 Applications to Living Cells  

If applications of laser tweezers to living cells are limited 

to a non-phototoxic light dose around 1 GJ/cm², this 

implies that the energy applied to a surface of 1 µm² 

should be restricted to 10 J, corresponding to 100 s 

illumination with 100 mW or 5  1017 photons per 

second (assuming a photon energy of 2  10–19 J at 

 = 1000 nm). The photon momentum in this case is 

h/ = 6.5  10–28 Ns, and a force 

F = 5  1017 s–1  6.5  10–28 Ns = 325 pN is put on the 

cell. Although only a minor part of this force ( 100 pN) 

can be used for light deflection in a tweezer system, the 

given parameters may correspond to a maximum for 

operation of optical tweezers under non-phototoxic 

conditions, e.g. for the applications summarized below. 

“Non-phototoxic conditions” assure survival of the 

majority of cells, but do not exclude any sub-lethal 

damage, e. g mechanical damage or delay of cell growth. 

In this context one should emphasize that high 

mechanical pressure is usually generated by ultra-short 

laser pulses, which are not further considered in this 

manuscript. 

Applications of optical tweezers – partly in 

combination with laser scissors – include any type of 

micromanipulation of cells or chromosomes (for an 

overview see [34, 38]), measurement of adhesion 

forces [3941] or deformability of cells, e.g. 

erythrocytes [42, 43]. Recent reviews on red blood cells 

describe applications in haemorheology, investigations 

of blood microcirculation, cell formation, maturation and 

erythropoiesis, often in connection with certain 

diseases [44, 45]. A further important issue is single cell 

sorting, which often occurs in combination with 

microfluidics or chip technologies [4649]. An 

appropriate setup, where individual cells are deflected by 

optical tweezers, is shown in Fig. 2. For activation of cell 

sorting as well as for label-free analysis of single cells a 

combination of laser tweezers and Raman spectroscopy 

has been suggested [5053]. Raman spectroscopy may be 

more specific than fluorescence spectroscopy [54], and 

an enhanced phototoxicity, which would occur upon 

loading of the cells with a fluorescent dye, can be 

excluded. 

 

Fig. 2 Rapid cell sorting using a Nd:YAG laser at 

1064 nm. Cells are deflected from a main stream by the 

force of an optical tweezer system (in relation to 

Ref. [49]). 

4 Innovative Techniques  

Application of optical tweezers with limited light doses 

needs innovative setups to perform experiments within a 

limited period of time. Beam deflection by galvano 

scanners [55], acousto-optic deflectors [56], or further 

kinds of spatial light modulators [57, 58] often exceeds 

the potential of manual operation. Holographic systems 

are now used increasingly for single or multiple laser 
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beam applications including micromanipulation, micro-

patterning and cell analysis (see e. g. [5961]). 

5 Conclusion 

Large photon numbers within a focused laser beam make 

it possible to use the small photon momenta for a transfer 

of forces from light to transparent particles, e.g. cells. It 

has been proven that living cells endure light exposures 

up to one or even a few Gigawatts per cm², if appropriate 

wavelengths in the red or near infrared spectral range are 

chosen. This gives us the possibility to hold, move or 

manipulate single living cells in various kinds of 

experiments. However, cell damage should always be 

kept in mind, and the present paper may stimulate authors 

to estimate possible phototoxicity during their own 

experiments. 
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