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Abstract 
 

In this article, the Quadratic rank transmutation map proposed and studied by Shaw and Buckley [1] is 
used to construct and study a new distribution called the transmuted Lomax-Exponential distribution 
(TLED) as an extension of the Lomax-Exponential distribution recently proposed by Ieren and Kuhe [2]. 
Using the transmutation map, we defined the probability density function and cumulative distribution 
function of the transmuted Lomax-Exponential distribution. Some properties of the new distribution such 
as moments, moment generating function, characteristics function, quantile function, survival function, 
hazard function and order statistics are also studied. The estimation of the distributions’ parameters has 
been done using the method of maximum likelihood estimation. The performance of the proposed 
probability distribution is being tested in comparison with some other generalizations of Exponential 
distribution using a real life dataset. The results obtained show that the TLED performs better than the 
other probability distributions. 
 

 
Keywords: Exponential distribution; quadratic rank transmutation map; moments; reliability analysis; 

maximum likelihood estimation; transmuted Lomax-exponential distribution; parameters; 
applications. 
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1 Introduction  
 
An Exponential distribution which can be used in Poisson processes gives a description of the time between 
events. The distribution has been applied widely life testing experiments. The distribution exhibits 
memoryless property with a constant failure rate which makes the distribution unsuitable for real life 
problems and hence creating a vital problem in statistical modeling and applications.  
 

The cumulative distribution function (cdf) and probability density function (pdf) of an exponential random 
variable X are respectively given by; 
 

( ) 1 xG x e  
,                                                                                                                           (1.1) 

 

( ) xg x e   ,                                                                                                                              (1.2) 
 

where 0  is the exponential parameter and 0X  is the random variable.  
 

There are several ways of adding one or more parameters to a distribution function which makes the 
resulting distribution richer and more flexible for modeling data. Some of the recent studies on the 
generalization of exponential distribution include the Lomax-Exponential distribution by Ieren and Kuhe [2], 
the Transmuted Odd Generalized Exponential-Exponential distribution by Abdullahi [3], the Transmuted 
Exponential distribution by Owoloko et al. [4], Transmuted Inverse Exponential distribution by Oguntunde 
& Adejumo [5], the Odd Generalized Exponential-Exponential distribution by Maiti and Pramanik [6] and 
the Weibull-Exponential distribution by Oguntunde et al. [7]. Of interest to us in this article is the Lomax-
Exponential distribution (LED) which has been found to be useful in various fields to model variables whose 
chances of survival and failure decreases with time. It was also discovered that the LED is positively skewed 
and performed better than some existing distributions like Weibull-Exponential and Exponential 
distributions [8,9,10].  
 

According to Cordeiro et al. [11] the cdf and pdf of the Lomax-G family (Lomax-based generator) for any 
continuous probability distribution are given respectively as: 
 

  ( ) 1 log 1 ( )F x G x
 


   

,                                                                                   (1.3)
      

                                                                         

 

     
11

( ) ( ) 1 ( ) log 1 ( ) ,f x g x G x G x
  


                                                      (1.4) 

 

where g(x) and G(x) are the pdf and cdf of any continuous distribution to be generalized respectively and 
>0 and  >0 are the two additional new parameters. 
 

Recently, a new extension of the exponential distribution has been proposed in the literature by considering 
the Lomax-G family above where the random variable X is said to have follow the Exponential distribution 

with parameter . The distribution of X according to Ieren and Kuhe [2] is referred to as Lomax-Exponential 
distribution. The pdf of the Lomax-Exponential distribution is defined by 
 

 
( 1 )

( ) , 0 , , , 0f x x x
       

 
                                                                      (1.5) 

 

The corresponding cumulative distribution function (cdf) of Lomax-Exponential distribution is given by 
 

 ( ) 1 , 0, , , 0F x x x
     


                                                                           (1.6) 

 

Where, 0, 0, 0, 0x        ;   and   are the shape parameters and θ is a scale parameter. 
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The cdf and pdf of the transmuted Lomax-Exponential distribution are obtained using the steps proposed by 
Shaw and Buckley [1]. A random variable X is said to have a transmuted distribution function if its pdf and 
cdf are respectively given by; 
 

 ( ) ( ) 1 - 2 ( )f x g x G x                                                                                                     (1.7) 
 

and  
 

 
2

( ) (1 ) ( )F x G x G x                                                                                                               (1.8) 
 

where; x > 0, and −1 ≤ � ≤ 1 is the transmuted parameter, G(x) is the cdf of any continuous distribution 
while f(x) and g(x) are the associated pdf of F(x) and G(x), respectively. 
 

The aim of this paper is to introduce a new continuous distribution called the Transmuted Lomax-
Exponential distribution (TLED) from the proposed quadratic rank transmutation map by Shaw and Buckley 
[1]. The remaining parts of this paper are presented in sections as follows: We defined the new distribution 
and give its plots in section 2. Section 3 derives some properties of the new distribution. Section 4 discusses 
reliability analysis of the TLED. The estimation of parameters using maximum likelihood estimation (MLE) 
is provided in section 5. In section 6, we carry out application of the proposed model with others using a real 
life dataset. Lastly, in section 7, we make some useful conclusions. 
 

2 The Transmuted Lomax-Exponential Distribution (TLED) 
 
Using equation (1.5) and (1.6) in (1.7) and (1.8) and simplifying, we obtain the cdf and pdf of the transmuted 
Lomax-Exponential distribution as follows: 
 

    
2

( ) (1 ) 1 1F x x x                      
   

                                                    (2.1)  

 

and  
 

 

   ( 1)
( ) 1 2 1f x x x

                       
                                                     (2.2) 

 

respectively. Where, 0, 0, 0, 0, 1 1x           ; α and β are the shape parameters, θ is a scale 

parameter and  is called the transmuted parameter. 
 

The pdf and cdf of the TLED using some parameter values are displayed in Figs. 2.1 and 2.2 as follows. 
 

 
  

Fig. 2.1. The graph of pdf of the TLED for 3, 2, 1     and different values of  as displayed on 

the key in the plot above 
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Fig. 2.2. The graph of cdf of the TLED for 3, 2, 1     and different values of  as shown in 

the key on the figure above 
 

3 Statistical Properties of the TLED 
 
3.1 The quantile function 
 
This function is derived by inverting the cdf of any given continuous probability distribution. It is used for 
obtaining some moments like skewness and kurtosis as well as the median and for generation of random 
variables from the distribution in question. Hyndman and Fan [12] defined the quantile function for any 

distribution in the form    1Q u F u   where  Q u  is the quantile function of  F x  for  0 1u   

Taking F(x) to be the cdf of the TLED and inverting, it will give us the quantile function as follows; 
 

     
2

( ) (1 ) 1 1F x x ux 
        

      
                                                     (3.1.1) 

 

Simplifying equation (3.1.1) above, we obtain: 

 

 
 

1

2(1 ) (1 ) 41 1
1

2
q

u
Q u X





  


  

                  
         

                                     (3.1.2)

 
 

3.2 Skewness and kurtosis 
 
This paper presents the quantile based measures of skewness and kurtosis due to non-existence of the 
classical measures in some cases.  
 

The Bowley’s measure of skewness by Kenney & Keeping [13] based on quartiles is given by: 
 

 

     
   

3 1 12
4 2 4

3 1
4 4

Q Q Q
SK

Q Q

 




                                                                                                  (3.2.1) 



 
 
 

Kuje and Lasisi; AJPAS, 3(1): 1-13, 2019; Article no.AJPAS.45764 
 
 
 

5 
 
 

And the [14] kurtosis is on octiles and is given by; 
 
 

  

       
   

7 5 3 1
8 8 8 8

6 1
8 8

Q Q Q
KT

Q Q

  



                                                                                 (3.2.2) 

3.3 Moments 
 
Let X  denote a continuous random variable, the nth moment of X  is given by 
 

' ( )

0

nnE f x dxxXn


    
                                                                                               (3.3.1) 

 

Taking  f x  to be the pdf of the TLED as given in equation (2.2) and simplifying the integral we have: 

 

    ' ( 1)

0

1 2
n

n
x x dxx

         


       
 

 

 

     
' ( 1) 2 12

0 0

1 2n n

n
x x dx x x dx

           
 

   
     

 

 

     
' ( 1) 2 12

0 0

1 2n n

n
x x dx x x dx

          
 

   
     

 
 

Using integration by substitution, let:

  

                 

 1 uu x x

du du
dx

dx


  




     

  
   

 

Now, substituting for u , x  and dx above, we have: 
 

           
' ( 1) 2 12

0 0

1 1 2 1
n n

u u

n

du du
u u

   
       

 


 
   

       
 

             
2' ( 1) 2 12

0 0

1 1 1 1 1
n n

n n

n nn nu u

n
u du u du

   
  

 
 

 
   

       
 

             
1 11 1 1 1 1 1 2 1 1 1 1' 2

0 0

1 1 1 1 1
n n

n n

n nn nu u u u

n
du du

  
    

 
 

 
         

       
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Recall that      
11

0

, , 1
yxB x y B y x t t dt


    and this implies that: 

 

      
'

1 1 1, 1 2 1 2 1, 1
n

n
B n B n

 
   

 


  
           

  
                    (3.3.2) 

 
The mean, variance, skewness and kurtosis measures can also be calculated from the nth ordinary moments 
as well as the moment generating function and characteristics function using some well-known relationships. 
 

The Mean 

The mean of the TLED can be obtained from the nth moment of the distribution when n=1 as follows:  

 

      
'

1
1 1 1,2 2 1 2 1, 2B B


   


  

        
 

                                            (3.3.3) 

 

Also the second moment of the TLED is obtained from the nth moment of the distribution when n=2 as 

 

      ' 1 1 1,3 2 1 2 1,32 2
B B


   


      

                                                 

(3.3.4)

 

The Variance 

 

The nth central moment or moment about the mean of X, say ��, can be obtained as 
 

 ' ' '
1 1

0

( 1)
nn i i

n in
i

n
E X

i
   



 
     

 
                                                                        (3.3.5) 

 
The variance of X for TLED is obtained from the central moment when n=2, that is, 
 

    
22( )Var X E X E X                                                                                               (3.3.6) 

 

 
2

' '
2 1( )Var X                                                                                                                 (3.3.7) 

 

Where '
1 and '

2 are the mean and second moment of the TLED all obtainable from equation (3.3.3) and 

(3.3.4).  
 

3.4 Moment generating function 
 
The moment generating is an important shape characteristic of a distribution and is always in one function 
that represents all the moments. In other words, the mgf produces all the moments of the random variable X 
by differentiation. 
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The mgf of a random variable X can be obtained by: 
 

 ( ) ( )

0

tx txt E f x dxe eM x


                                                                                            (3.4.1)

               
 

  '( )
!0

nttxt E eM x nnn



  


                                                                                           (3.4.2)

  

 
where  

      
'

1 1 1, 1 2 1 2 1, 1
n

n
B n B n

 
   

 


  
           

    
 

is as defined in equation (10) previously. 
 

3.5 Characteristics function 
 
This function is useful and has some properties which give it a genuine role in mathematical statistics. It is 
used for generating moments, characterization of distributions and in analysis of linear combination of 
independent random variables. 
 
The characteristics function of a random variable X is given by; 
 

       ( ) cos( ) sin( ) cos( ) sin( )itx
x t E e E tx i tx E tx E i tx                                 (3.5.1) 

 
Simple algebra and power series expansion proves that 
 

 
 

 
 

2 2 1
' '

2 2 1
0 0

1 1
( )

2 ! 2 1 !

n nn n

x n n
n n

t t
t i

n n
  

 


 

 
 


                                   

(3.5.2) 
 

where ���
′  and �����

′ are the moments of X for n=2n and n=2n+1 respectively and can be obtained from ��
′   

as  
 

      
2

'

2
1 1 1,2 1 2 1 2 1,2 1

n

n
B n B n

 
   

 


  
           

    
 

and 
 

      
2 1

'

2 1
1 1 1,2 2 2 1 2 1,2 2

n

n
B n B n

 
   

 






  
           

    
 

respectively. 
 
 



 
 
 

Kuje and Lasisi; AJPAS, 3(1): 1-13, 2019; Article no.AJPAS.45764 
 
 
 

8 
 
 

 

4 Some Reliability Functions 
 
In this section, we present some reliability functions associated with TLED including the survival and hazard 
functions. 
 

4.1 The survival function 
 
The survival function describes the likelihood that a system or an individual will not fail after a given time. 
It tells us about the probability of success or survival of a given product or component. Mathematically, the 
survival function is given by: 
 

   1S x F x                                                                                                                       (4.1.1) 

 
Taking F(x) to be the cdf of the TLED, substituting and simplifying (4.1.1) above, we get the survival 
function of the TLED as:  
 

     
2

1 (1 ) 1 1S x x x         
                 

     

                                       

(4.1.2) 
 

Below is a plot of the survival function at chosen parameter values in Fig. 4.1.1 

 

 

 

Fig. 4.1.1.  Plot of the survival function of the TLED for 3, 2, 1     and different values of
as shown on the figure above

 
 
From the figure above, we observed that the probability of survival for any random variable following a 
TLED decreases with time, that is, as time or age grows the probability of life decreases. This implies that 
the TLED could be used to model random variables whose survival rate decreases as their age lasts.  
 

 
 



 
 
 

Kuje and Lasisi; AJPAS, 3(1): 1-13, 2019; Article no.AJPAS.45764 
 
 
 

9 
 
 

 
4.2 The hazard function 
 
Hazard function as the name implies is also called risk function, it gives us the probability that a component 
will fail or die for an interval of time. The hazard function is defined mathematically as 

 
 
 

 
 1

f x f x
h x

F x S x
 


                                                                                                    (4.2.1) 

 
Taking f(x) and F(x) to be the pdf and cdf of the proposed Lomax-Exponential distribution given previously, 
we obtain the hazard function as:  
 

 
   

   

( 1)
1 2 1

2
(1 ) 1 1

x x

h x

x x

          

         

            
            

   

                       (4.2.2) 

 

The following is a plot of the hazard function at chosen parameter values in Fig. 4.2.1 

 

 

Fig. 4.2.1. Plot of the hazard function of the TLED for 3, 2, 1     and different values of as 

shown on the plot above 
 
Fig. 4.2.1 above shows the behavior of hazard function of the TLED and it means that the probability of 
failure for any TLED random variable is decreasing  with respect to time that is, as the time increases, the 
probability of failure or death decreases.  
 

5. Parameter Estimation via Maximum Likelihood 
 
Let 1,..., nX X  be a sample of size ' 'n  independently and identically distributed random variables from the 

TLED with unknown parameters , ,    and   defined previously. The pdf of the TLED is given as: 

 

   ( 1)
( ) 1 2 1f x x x

                         
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The likelihood function is given by; 
 

       
( 1)

| , , , 1 2 1
1 1

n n n
L X x x

i i
i i

              
    

         
            

(5.1)

 
Taking the natural logarithm of the likelihood function, i.e.,  
 

Let,  1 2log , ,..., | , , ,nl L x x x    
, 
such that 

 

     log log log 1 log log 1 2 1
1 1

n n
l n n n x x

i i
i i

           
  

              
     

(5.2) 

 

Differentiating � partially with respect to , ,    and   respectively gives 

 

 
    

 

2 log log
log log

1 1 1 2

x xn nl n i i
n x

i
i i x

i

     
  

     

 
     

             
  

(5.3) 

 

 
   

 

112
1

( 1)
1 1 1 2

x x
i in nl n

x
i

i i x
i

     


  
     

        
                        

 
 

(5.4) 

 

 
 

 

1
21

( 1)
1 1 1 2

x xn nl n i ix x
i i

i i x
i

  
  

     

  
      

                 
  

                 (5.5) 

 

 
 

2 1

1 1 2

xnl i

i x
i

  

    

 
    

        
  

                                                                           (5.6) 

 
Equating equations (5.3), (5.4), (5.5) and (5.6) to zero and solving for the solution of the non-linear system 

of equations will give us the maximum likelihood estimates of parameters , ,    and   respectively. 

However, the solution cannot be obtained analytically except numerically with the aid of suitable statistical 
software like Python, R, SAS, etc., when data sets are given. 
 

6. Application 
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Here, we have applied and compared the performance of the Transmuted Lomax-Exponential distribution 
(TLED) to that of Lomax-Exponential distribution (LED), Transmuted Odd Generalized Exponential-
Exponential distribution (TOGEED), Odd Generalized Exponential-Exponential distribution (OGEED), 
Weibull-Exponential distribution (WED), Transmuted Exponential distribution (TED) and the Exponential 
distribution (ED) using the following dataset. 
 
The data represents the remission times (in months) of a random sample of 128 bladder cancer patients. It 
has previously been used by many researchers [15,3,16] and [17]. It’s summarized as follows:  
 

Table 6.1. Summary statistics for the dataset 
 

Parameters n Minimum 
1Q  Median 

3Q  Mean Maximum Variance Skewness Kurtosis 

Values 128 0.0800 3.348 6.395 11.840 9.366 79.05 110.425 3.3257 19.1537 

 
From the descriptive statistics in Table 6.1, we observed that the data set is positively skewed with a very 
high coefficient of kurtosis and therefore suitable for flexible and skewed distributions.  
 
To compare the distributions listed above, we have used several measures of model fit such as AIC (Akaike 
Information Criterion), Cramѐr-Von Mises (W*), Anderson-Darling (A*) Kolmogorov-smirnov (K-S) 
statistics. Details of the above mentioned goodness of fit tests can be found in Chen and Balakrishnan [18].  
 
Note that the model with the lowest values of these statistics shall be chosen as the best model to fit the data. 
 

Table 6.2. The statistics AIC, A*, W* and K-S for the fitted models to the dataset 
 

Distributions Parameter 
estimates  

ƖƖ=(log-likelihood 
value) 

AIC A* W* K-S P-value 
(K-S) 

Ranks 

TLED ��=0.4665  
��=4.2157   

�� =9.7146   

�� =-0.8445  

409.6905  827.3809  0.1326  0.0210  0.0448  0.9593  1 

LED ��=0.1643  
��=6.3108  

�� =9.9520   

415.6839  837.3678  0.3392  0.0551  0.0988  0.1639  2 

TOGEED ��=0.0182 
��=2.7822  

�� =0.7591  

416.5186  839.0372  1.0381  0.1747 0.1079  0.1014  3 

TED ��=0.1065 

��=-0.2944 

415.7532  835.5065  0.8349 0.1404 0.1322 0.0228 4 

OGEED ��=0.0346  
�� =1.6066 

439.5273 883.0546 3.2153 0.5463 0.2341 1.6e-06  5 

WED ��=0.0070  
��=5.1855 

��=0.7814  

465.8212  937.6424  0.5678 0.0924  0.2435 5.1e-07 6 

ED ��=0.1085  414.3576  830.7153 NaN NaN 0.9465  2.2e-16 7 

 
It is shown from Table 6.2 above that the Transmuted Lomax-Exponential distribution (TLED) corresponds 
to the smallest values of AIC, A*, W* and K-S  compared to those of the Lomax-Exponential distribution 
(TLED), Transmuted odd generalized exponential-exponential distribution (TOGEED), odd generalized 
exponential-exponential distribution (OGEED), Weibull-Exponential distribution (WED), Transmuted 
Exponential distribution (TED) and the Exponential distribution (ED) and therefore we chose the TLED as 
the best model the fits the real life data. The acronym NaN in the table above simply implies that the 
supposed figure is not a number and hence does not exist for inference purpose. 
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7 Conclusion 
 
In this article, we proposed a new distribution, TLED, derived and study some of its properties with 
graphical analysis and discussion on its usefulness and applications. Hence, having demonstrated earlier in 
the previous section, we have a conclusion based on our applications of the model to a real life data that the 
new distribution (TLED) has a better fit compared to the other six already existing models and hence a very 
competitive model for studying real life situations. 
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