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Abstract

In this paper, the modified simple equation (MSE) method is applied to find the exact solutions
for the Sharma-Tasso-Olver (STO) equation and the similar Hirota-Satsuma KdV system. The
MSE method is an effective method in investigating exact solitary wave solutions to nonlinear
evolution equations (NLEEs) in the field of applied mathematics, mathematical physics and
engineering. And it is very direct and effective.
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1 Introduction

Nonlinear partial differential equations (NLPDEs) are often used to describe the physical system,
and the NLEEs have become a very useful tool for describing natural phenomena of science and
engineering models. In the recent years, construction of exact solutions, in particular, solitary
wave solutions of NLPDEs is an important significance of nonlinear science. Accordingly, a number
of methods for finding exact solutions of NLPDEs have been proposed, such as the Jacobi elliptic
function method [1], the extended tanh-function method [2], the inverse scattering transform [3], the
F-expansion method [4], the (G′/G)-expansion method [5], the Backlund transformation method
[6], the sine-cosine method [7], the first integration method [8], the auxiliary equation method [9],
the homogeneous balance method [10], and others.Of course, there are a lot of important papers
published in recent years which using the modified simple equation method such as [11]-[21]. The
objective of this article is to apply the MSE method to construct the exact solutions for NLEEs
in mathematical physics such as the STO equation and the similar Hirota-Satsuma KdV system.
The rest of this article is organized as follows: In section 2, we give brief descriptions of the MSE
method. In section 3 and section 4, we employ the MSE method to STO equation and the similar
Hirota-Satsuma KdV system, and we describe the pictures of those Solitary Wave Solutions by
MATLAB. In section 5, we summarize and discuss our results.

2 The Method

A.J.M. Jawad, M.D. Petkovic and A. Biswas described the MSE method in [22], the main steps are
summarized in the following steps:

For a given NLPDE in the form

H(u, ux, ut, uxx, utt, · · · ) = 0. (2.1)

In general, the left hand side of Eq.(2.1)is a polynomial in u and its various derivatives.

Step 1: We seek the traveling wave solution of(2.1)in the form:

u(x, t) = y(z); z = k(x− ωt), (2.2)

where k and ω are constants to be determined later. Under the transformation(2.2), Eq.(2.1)is
reduced to an ordinary differential equation(ODE)

F (y, y′, y′′, · · · ) = 0. (2.3)

Where F is a polynomial in u(z) and its derivatives, wherein u′(z) = du
dz

.

Step 2: We suppose that Eq.(2.3)has the solution in the form:

y(z) =
N∑
i=1

ai[
s′(z)

s(z)
]i, (2.4)

where ai(i = 0, 1, 2, · · · , N) are constants to be determined, such that aN ̸= 0, and s(z) is an
unidentified function to be evaluated. In Jacobi elliptic function method, sine-cosine method, tanh-
function method, Exp-function method etc, the solutions are proposed in terms of some functions
established in advanced. But in the MSE method, s(z) is neither pre-defined nor a solution of any
prescribed differential equation. Therefore, it is not possible to conjecture from earlier what kind
of solutions one may get through this method. This is the individuality and distinction of this
method. Therefore, some new solutions might be found by this method.
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Step 3: The positive integer N appearing in Eq.(2.4) can be determined by taking into account the
homogeneous balance between the highest order nonlinear terms and the derivatives of the highest
order occurring in Eq.(2.3).

Step 4: Substitute (2.4) into (2.3), calculate all the necessary derivatives y, y′, y′′, ... and then
account the function s(z). As a result of this substitution, we get a polynomial of s′(z)/s(z) and its
derivatives. In this polynomial, we equate with zero all the coefficients of it. This operation yields
a system of equations which can be solved to find ai(i = 0, 1, 2, · · · , N), and s(z).Consequently, we
can get the exact solution of Eq.(2.1).

3 Application of the Method to the STO Equation

Let us consider the STO equation

ut + α(u3)x +
3

2
α(u2)xx + αuxxx = 0. (3.1)

In order to find the exact solitary wave solutions of the equation, we use the wave variable

u(x, t) = y(z), z = k(x− ωt), (3.2)

where k and ω are constants to be determined. The wave transformation (3.2) reduces (3.1) into
the ODE in the following form:

(−kω)y′ + 3αky2y′ + 3αk2[(y′)2 + yy′′] + αk3y′′′ = 0, (3.3)

where prime denotes derivatives with respect to z. Now, integrating Eq.(3.3) with respect to z, we
get a new ODE in the form:

(−ω)y + αy3 + 3αkyy′ + αk2y′′ = 0. (3.4)

In order to determine the value of N, balancing y3 and y′′ gives N = 1. Therefore, the solution of
Eq.(3.4)takes the form:

u(x, t) = y(z) = a0 + a1

(
s′

s

)
, (3.5)

where a0 , a1 and a2 are constants to be determined later such that a1 ̸= 0, and s(z) is an unknown
function. The derivatives of y are given in the following :

y′ =
a1s

′′

s
− a1(s

′)2

s2
, (3.6)

y′′ =
2a1(s

′)3

s3
− 3a1s

′s′′

s2
+

a1s
′′′

s
, (3.7)

y3 =
a3
1(s

′)3

s3
+

3a0a
2
1(s

′)2

s2
+

3a1a
2
0s

′

s
+ a3

0. (3.8)

Substituting the values of y , y′ , y′′ and y3 into Eq. (3.4) and then setting each coefficients of
s−j , j = 0, 1, 2, · · · to zero, we obtain a system of algebraic equations for a0, a1 and s(z):

(−ω)a0 + αa3
0 = 0, (3.9)

(−ω)a1s
′ + 3αa2

0a1s
′ + 3αka0a1s

′′ + αk2a1s
′′′ = 0, (3.10)

3αa2
1a0(s

′)2 + 3αk
(
a2
1s

′s′′ − a0a1(s
′)2
)
− 3αk2a1s

′s′′ = 0, (3.11)

αa3
1(s

′)3 − 3αka2
1(s

′)3 + 2αk2a1(s
′)3 = 0. (3.12)
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From Eq.(3.9), we obtain

a0 = 0,±
√

ω

α
.

In order to simplify the process, we assume that α , ω is greater than zero. And Eq.(3.12), yields

a1 = k, 2k,

since a1 ̸= 0.

Therefore, for the values of a0, a1, there arise the following cases:

Case 1: When a0 = 0, from Eqs. (3.10) and (3.11), we obtain

s(z) = c1e
√

ω
αk2 z

+ c2e
−
√

ω
αk2 z

,

where c1 and c2 are integration constants.

Substituting the values of a0, a1 and s(z) into Eq.(3.5) we obtain the following exponential form
solution:

y(z) = k

√
ω

αk2 c1e
√

ω
αk2 z −

√
ω

αk2 c2e
−
√

ω
αk2 z

c1e
√

ω
αk2 z

+ c2e
−
√

ω
αk2 z

, (3.13)

or

y(z) = 2k

√
ω

αk2 c1e
√

ω
αk2 z −

√
ω

αk2 c2e
−
√

ω
αk2 z

c1e
√

ω
αk2 z

+ c2e
−
√

ω
αk2 z

. (3.14)

Simplifying the required solution (3.13) and (3.14) , we derive the following close-form solution of
the STO equation (3.1):

y(z) =

√
ω

α

(c1 − c2) cosh
√

ω
αk2 z + (c1 + c2) sinh

√
ω

αk2 z

(c1 + c2) cosh
√

ω
αk2 z + (c1 − c2) sinh

√
ω

αk2 z
, (3.15)

or

y(z) = 2

√
ω

α

(c1 − c2) cosh
√

ω
αk2 z + (c1 + c2) sinh

√
ω

αk2 z

(c1 + c2) cosh
√

ω
αk2 z + (c1 − c2) sinh

√
ω

αk2 z
. (3.16)

Solution (3.15) , (3.16) is the generalized solitary wave solution of the STO equation. Since c1 and
c2 are arbitrary constants, one might arbitrarily choose their values. Therefore, choose c1 = c2 , we
obtain the following solutions:

u1(x, t) = 2

√
ω

α
tanh

√
ω

α
(x− ωt), (3.17)

u2(x, t) = 4

√
ω

α
tanh

√
ω

α
(x− ωt). (3.18)

Choose c1 = −c2 , we obtain the following solutions:

u3(x, t) = 2

√
ω

α
coth

√
ω

α
(x− ωt), (3.19)

u4(x, t) = 4

√
ω

α
coth

√
ω

α
(x− ωt). (3.20)

The other choices of c1 and c2, we might obtain much new and more general exact solutions, for
succinctness, we do not give all of them.
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Case 2: When a0 ̸= 0, we discuss this case a1 = 2k. We assume that α , ω is greater than zero,
and when k = 1 or k = 1

2
, we can refer to this paper [23]. Solving Eq.(3.10) and (3.11), we get

s = c2 +
m

l
e−lz, (3.21)

s′ = −me−lz, (3.22)

where l = −ω
αa0k

, m = k
a0c1

. and c1 and c2 are constants of integration. Substituting the Eq.(3.21), (3.22)
into the Eq.(3.5), we get the following solution

y = a0 + (2k)
(−k

√
α
ω
)c1e

ω
αa0k

z

c2 + (−αk2c1
ω

)e
ω

αa0k
z
. (3.23)

Then simplify it, we obtain

y = a0 +
(−2k2)

√
α
ω
c1
(
cosh ω

2αa0k
z + sinh ω

2αa0k
z
)

(c2 − αk2c1
ω

) cosh ω
2αa0k

z − (c2 +
αk2c1

ω
) sinh ω

2αa0k
z
. (3.24)

Solution (3.24) is the generalized solitary wave solution of the STO equation. Since c1 and c2 are
arbitrary constants, one might arbitrarily choose their values. Therefore, when a0 =

√
ω
α
, choose

c2 = αk2c1
ω

, we obtain the following solution:

u5(x, t) = 2

√
ω

α
+

ω

α
coth

1

2

√
ω

α
(x− ωt). (3.25)

Choose c2 = −αk2c1
ω

, we obtain the following solution:

u6(x, t) = 2

√
ω

α
+

ω

α
tanh

1

2

√
ω

α
(x− ωt). (3.26)

When a0 = −
√

ω
α
, choose c2 = αk2c1

ω
, we obtain the following solution:

u7(x, t) =
ω

α
coth

−1

2

√
ω

α
(x− ωt). (3.27)

Choose c2 = −αk2c1
ω

, we obtain the following solution:

u8(x, t) =
ω

α
tanh

−1

2

√
ω

α
(x− ωt). (3.28)

Now we give some figures of the solutions with different parameters of Case 1.

4 Application to the Similar Hirota-Satsuma KdV System

Let us consider the similar Hirota-Satsuma KdV system{
ut =

1
2
uxxx + 3uvx,

vt = uux.
(4.1)

We referred to Eq.(4.1) as the similar Hirota-Satsuma KdV system, which was derived by Hirota and
Satsuma. The system typically describes an interaction of two long waves with different dispersion
relations. Now, we use the MSE method to find the solitary wave solutions to the system (4.1). Let

u(z) = u(x, t), v(z) = v(x, t), z = k(x− ωt),

system (4.1) becomes {
(−kω)u′ = 1

2
k3u′′′ + 3kuv′,

(−kω)v′ = kuu′.
(4.2)
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Fig. 1. Shape of (3.17),when ω = 2, α = 1 Fig. 2. Shape of (3.17),when ω = 1/4, α = 1

Fig. 3. Shape of(3.19),when ω = 2, α = 1 Fig. 4. Shape of (3.19),when ω = 1/4, α = 1

Integrating the second equation of (4.2) with respect to z, and neglecting the constant of integration,
we obtain

v =
−u2

2ω
. (4.3)

Substituting Eq.(4.3) into system (4.2) we get

(kω)u′ +
1

2
k3u′′′ − 6k

ω
u2u′ = 0. (4.4)

Balancing the highest order derivative u′′′ and nonlinear term u2u′, we get N = 1. Thus, the
solution of Eq.(4.4) becomes

u(z) = a0 + a1

(
s′

s

)
. (4.5)

where a0, a1 are constants to be determined later such that a1 ̸= 0, and s(z) is an unknown function
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to be determined.It is easy to see that

u′ = a1

(
s′′

s

)
− a1

(
s′

s

)2

, (4.6)

u′′ = a1

(
s′′′

s

)
− 3a1

(
s′s′′

s2

)
+ 2a1

(
s′

s

)3

, (4.7)

u3 = a3
1

(
s′

s

)3

+ 3a2
1a0

(
s′

s

)2

+ 3a1a
2
0

(
s′

s

)
+ a3

0. (4.8)

Integrating Eq.(4.4) with respect to z, we can easily get the following equation

(kω)u+
1

2
k3u′′ − 2k

ω
u3 = 0. (4.9)

Now substituting the values of u , u′′ , u3 in Eq.(4.9) and then equating the coefficients of s0, s−1,
s−2 and s−3 to zero, we respectively obtain

kωa0 +
(−2k

ω

)
a03 = 0, (4.10)

kωa1s
′ +

1

2
a1k

3s′′′ −
(−6k

ω

)
a1a

2
0s

′ = 0, (4.11)

3

2
k3a1s

′s′′ +
(6k
ω

)
a0a

2
1(s

′)2 = 0, (4.12)

k3a1(s
′)3 −

(2k
ω

)
a3
1(s

′)3 = 0. (4.13)

Solving Eq.(4.10), we get

a0 = 0,±
√
2

2
ω.

Solving Eq.(4.13), we have

a1 = ±
√
2ω

2
k.

Solving Eq.(4.11) and (4.12), we get

s = c2 +
m

l
e−lz, (4.14)

s′ = −me−lz, (4.15)

where l =
6a2

0−ω2

2a0a1
, m = k2ωc1

4a0a1
, and c1 and c2 are constants of integration.

Substituting the Eq.(4.14), (4.15) into the Eq.(4.5), we get the following solution

u = a0 + a1

( −me−lz

c2 +
m
l
e−lz

)
. (4.16)

When a0 = ±
√

2
2
ω, a1 == ±

√
2ω
2

k. Putting the values of a0 , a1 into Eq.(4.16) and simplify it, we
obtain

u(z) =
−
√
2

2
ω

(
1− k2c1

2ω

cosh(
√

ω
k
z)± sinh(

√
ω
k
z)

c2
(
cosh(

√
ω
k
z)∓ sinh(

√
ω
k
z)
)
+ c1k2

4ω

(
cosh(

√
ω
k
z)± sinh(

√
ω
k
z)
))

where z = k(x− ωt).
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Fig. 5. Shape of (4.19),when ω = 4 Fig. 6. Shape of(4.19),when ω = 1/4

Fig. 7. Shape of (4.20),when ω = 4 Fig. 8. Shape of (4.20),when ω = 1/4

We can freely choose the constants c1 and c2, for example, choose c2 = c1k
2

4ω
, we get

u1(x, t) = ±
√
2

2
ω tanh

√
ω(x− ωt). (4.17)

Choose c2 = − c1k
2

4ω
, we get

u2(x, t) = ±
√
2

2
ω coth

√
ω(x− ωt). (4.18)

Now, combined (4.17) and (4.18) with Eq.(4.3), we get

v1(x, t) =
1

2
ω tanh2 √ω(x− ωt), (4.19)
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and

v2(x, t) =
1

2
ω coth2 √ω(x− ωt). (4.20)

(4.17) − (4.20) are the exact traveling wave solutions of the similar Hirota-Satsuma KdV system.
Now we give several figures of the solutions with different parameters.

5 Conclusions

In this paper, we constructed some exact solutions of NLPDEs such as the STO equation and
the similar Hirota-Satsuma KdV system. Since the considered equation have been shown to be
applicable to many dynamics problems in physics, and the exact solutions will be helpful in related
research and numerical studies. When the parameters receive special values, solitary wave solutions
are derived from the exact solutions. We depict the graphs and have analyzed the solitary wave
properties of the solutions for different values of physical parameters via the graphs.
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