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ABSTRACT

The aim of this paper is to show the recurrence method for obtaining the number of inversions In(k)
in input sets with different sizes n, when the information about In−1(k) is given. The proposed
method is based on a simple observation that the use of recursive approach gives an elegant way
for obtaining those numbers in contradiction to the so far existing approach based on binomial
coefficients and pentagonal numbers. The complexity of this method is O(n3). The results of
this proposal can be used for interesting exercises in education of maths and also for problem of
inversions description in sorting algorithms.
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1 INTRODUCTION
In combinatorics, a permutation is usually
understood as a sequence containing each
element from a finite set once and only once. Due
to the fact that permutations can also represent
the unsorted set of elements, in many cases
their properties can be used in the analysis
that considers the problem of sorting algorithms
performance in computer science.

Let a1a2 . . . an denote the permutation of n-
element set {1, 2, . . . , n}. Each pair (ai, aj)
that fulfills the condition ai > aj for i < j is
called an inversion (see [1]). For permutation:
{6 7 1 2} the following set of inversions
can be given: {(6, 1), (6, 2), (7, 1), (7, 2)}. In
computer science the existence of at least one
inversion in input set denotes that this set is
unsorted and that is why this term is often used in
the analysis of sorting algorithms. For example,
let’s consider the sequence {1, 2, 7, 6} where the
only one inversion (7, 6) exist. Its existence
means that the sequence is unsorted. The term
inversion was first introduced by Gabriel Cramer
in 1750 (see [2]), who took into account the
problem of finding the solution for linear equation
by matrix determinants.

The table of inversions b1b2 . . . bn for permutation
a1a2 . . . an can be obtained by the assumption
that bj is the number of such elements from
sequence that are on left side of j, which
are greater than j, thus bj is the number
of inversions, whose second component is j
(see [3]). For example, consider the following
permutation:

6 7 1 2 4 9 5 8 3 (1.1)

which has the inversion vector
b1 b2 b3 b4 b5 b6 b7 b8 b9
2 2 6 2 3 0 0 1 0

With regard to the Marshall Hall theorem ([4]) it
is worth noting that the inversion vector explicitly
defines only one corresponding permutation. For
sequence (1.1) it can be achieved in the following
manner:

Number 9 should be the first written number.
Then number 8, because from inversion vector it
can be seen that it has only one inversion, thus it
should be written on right side of 9. Next, number

7 – in inversion vector b7 = 0 thus it should be
written on the left side of 9. Similarly 6, because
b6 = 0, thus 6 should be on left side of 7. The
sequence 6 7 9 8 has been obtained so far. For
5, b5 = 3 thus 5 should be written between 9
and 8, because it guarantees the existence of
three inversions, but 4 should be written between
7 and 9 because this guarantees the existence of
2 inversions (b4 = 2), and so on. As a result the
sequence (1.1) is obtained.

It can be very easily verified that when in one
sequence two neighboring elements are changed
the number of inversions raises or falls by 1.

2 NUMBER OF INVERSIONS
A very interesting issue is the question of how
many permutations with k inversions are present
in n-element set. If n = 1 then there are no
inversions, thus k = 0. For n = 2 there are only
two possible cases – k = 0 (all elements are in
the right order) or k = 1 (there is one inversion
a2a1).

For n = 3 the following are possible: one case
(a1a2a3) with k = 0, two cases (a1a3a2, a2a1a3)
with k = 1 inversion and inversion vectors
(b1b2b3 = 0, 1, 0; b1b2b3 = 1, 0, 0), next two
cases (a2a3a1, a3a1a2) with k = 2 inversions
and inversion vectors (b1b2b3 = 2, 0, 0; b1b2b3 =
1, 1, 0) and also one case (a3a2a1) with inversion
vector (b1b2b3 = 2, 1, 0). The calculation of next
cases requires consideration of n! permutations.
If the number of k inversions in n-element set
will be denoted by In(k) consequently, taking into
account the vector b1b2 . . . bn it can be observed
that In(0) = 1, In(1) = n− 1 and

In

((
n

k

)
− k

)
= In(k). (2.1)

In Table 1 all numbers under the emphasized
(bold) positions fulfill

In(k) = In(k − 1) + In−1(k), for k < n
(2.2)

It can be shown that (see [5]):

In(2) =
(
n
2

)
− 1 for n ≥ 2

In(3) =
(
n+1
3

)
−
(
n
1

)
for n ≥ 3

In(4) =
(
n+2
4

)
−
(
n+1
2

)
for n ≥ 4

In(5) =
(
n+4
5

)
−
(
n+2
3

)
+ 1 for n ≥ 5

(2.3)
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and generally the equation for calculating In(k) can be explained as

In(k) =

(
n+ k − 2

k

)
−

(
n+ k − 3

k − 2

)
+

(
n+ k − 6

k − 5

)
+

(
n+ k − 8

k − 7

)
− . . .

+(−1)j
((

n+ k − uj − 1

k − uj

)
+

(
n+ k − uj − j − 1

k − uj − j

))
+ . . . n ≥ k (2.4)

where uj = (3j2 − j)/2 and is called the pentagonal number (see Euler’s Pentagonal Number
Theorem in [6]).

Table 1 presents the probability distribution of number of inversions in n-element permutation. In
order to illustrate this it is enough to divide each number in a given row of Table 1 by n! What can be
noted from this is that the average number of inversions equals (see [5]):

µ(n) = 0 +
1

2
+

3

2
+ . . .+

n− 1

2
=
n(n− 1)

4
=
n2 − n

4
, (2.5)

while the variance can be computed from

σ2(n) = 0 +
1

4
+

5

6
+ . . .+

n2 − 1

12
=
n(2n+ 5)(n− 2)

72
. (2.6)

It means that the standard deviation is proportional to

σ(n) ∝ 1

6
n

3
2 . (2.7)

The numbers In(k) can be used for example in computational complexity average case analysis in
insertion sort algorithm because the number of inversions in permutation (a1a2 . . . an) is used for
calculations of the total average time (expressed by the number of dominant operations) needed to
sort n-element input set (examples are given in [7]).

Table 1: Number In(k) inversions in n-th element permutation
n In(0) In(1) In(2) In(3) In(4) In(5) In(6) In(7) In(8) In(9) In(10)
1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0
3 1 2 2 1 0 0 0 0 0 0 0
4 1 3 5 6 5 3 1 0 0 0 0
5 1 4 9 15 20 22 20 15 9 4 1
6 1 5 14 29 49 71 90 101 101 90 71

3 SIMPLE RECURRENCE
METHOD

On the basis of the data gathered in Table 1 it is
clear to notice that the frequency of occurrence
k inversions in n element set undergoes very
simple relations. It can be defined in the following
manner. Let n = 3, thus there are 6 permutations
and the number of k inversions can be seen

in Table 1. If there is a need to calculate the
number of possible inversions for n = 4 (there
are 24 permutations) it can be done considering
the information for n − 1 = 3. The following
operation should be carried out: sum n = 4 times
the number of inversions for n−1 = 3 however for
each partial sum move the numbers one column
to the right. The example is shown in Table 2 and
in Fig. 1.
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Table 2: Example of the method
n = 3 1 2 2 1

1 2 2 1
1 2 2 1

1 2 2 1
n = 4 Σ 1 3 5 6 5 3 1

1 3 5 6 5 3 1
1 3 5 6 5 3 1

1 3 5 6 5 3 1
1 3 5 6 5 3 1

n = 5 Σ 1 4 9 15 20 22 20 15 9 4 1

Figure 1: Example of the method

The method presented above is based on
recurrence approach. Calculations for the given
n can be done when the information about n − 1
is given. However, in each recurrence call of
method there is a need of n-times adding of k(n)
possible inversions where:

k(n) = k(n− 1) + n− 1 where k(1) = 1.
(3.1)

The solution of equation (3.1) is:

k(n) = 1 +

n∑
i=1

(i− 1) = 1 +
n (n− 1)

2
(3.2)

thus k(n) is O(n2).

Since the presented method requires n times
recall of k(n), its time complexity is O(n3).

4 CONCLUSIONS

The key aspect of this work was to outline
the simple recurrence method for obtaining the
In(k) numbers. Its complexity is polynomial
and method doesn’t require any additional
calculations unlike in the case of the method
based on binomial coefficients where the
pentagonal numbers are used. This method
can be very useful in the analysis of sorting
algorithms properties and a very easy way to
measure the extent to which the permutation
is out of order. Moreover, thanks to presented
explanations it is possible to use this method in
education of maths.
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