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Abstract 
Quite many authors have dealt with the estimation of the parameters of nor-
mal distribution on the basis of non-homogeneous sets: Hald A. 1949 [1], 
Arango-Castillo L. and Takahara G. 2018 [2]. All the robust methods are based 
on the assumption that the results affected by gross errors can be found to the 
left and/or to the right of censoring, or truncated, points. However, as a rule, 
the (intrinsic) distribution of observations is complex (mixed) consisting of 
two or more distributions. Then the existing methods, such as ML, Huber’s, 
etc., yield enlarged estimates for the normal-distribution variance. By study-
ing better estimates the present author has invented new method, called 
PEROBLS D, based on the Tukeyan mixed-distribution model in which both 
the contamination rate (percentage) and the parameters of both distributions, 
forming the mixed one, are estimated, and for the parameters of the basic 
normal distribution better estimates are obtained than by the existing me-
thods. 
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1. Introduction and History of Robust Estimation 

The history of this problem is older than 300 years. For example, Galileo as long 
ago as in 1632 used the least absolute sum in order to reduce the effect of obser-
vational errors to the estimate of the measured quantity [3], whereas Rudjer 
Boscovich, is the first who, as early as in 1757, rejected clearly outlying observa-
tions [4], also done by Daniel Bernouli 1777 [4]. The trimmed mean has been 
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used since long ago, see “Anonymous” 1821 [4]. The first formal rules for re-
jecting of observations were proposed by Peirce 1852 and Chauvenet 1863, and 
somewhat later appear the papers by Stone 1868, Wright 1884, Irvin 1925, Stu-
dent 1927, Thompson 1935, and by many others [4]. 

The mixed distribution models have been also considered since long ago: 
Glaisher 1872/1873, Stone 1873, Edgeworth 1883, Newcomb 1886, Jeffreys 1932/ 
1939 [4]. Tukey in 1960 [5] defined a mixed model as a mixture of two normal 
distributions of a basic ( )x θ σΦ −    and of a contaminating ( ) 3x θ σΦ −    
distribution: 

( ) ( ) ( ) ( )1 3F x x xε θ σ ε θ σ= − Φ − + Φ −       , 

where ( ) ( )21 exp 2 d
2

x
x t t

−∞
Φ = −

π ∫
 is the function of the standard normal  

distribution. Here the elements of the contaminating set appear with probability 
ε , (Tukey assumes ε  as a small number, about 5%), and behave as gross er-
rors. In this way the real distributions are represented through a normal-distri- 
bution model with weighted tails. 

The term robustness began to be used since 1953 (introduced by G. E. P. Box) 
in order to discriminate the class of statistical procedures with little sensitivity to 
minor deviations from the starting assumptions. Some authors use the term sta-
bility, but it is less used than the term robustness. In the Foreword of his book 
ROBUST STATISTICS, Huber in 1981 [6] emphasizes that among the leading 
scientists in the late XIX and the early XX centuries there were a few statisticians 
—practitioners (and mentions: astronomer Newcomb, astrophysicist Eddington 
and geophysicist Jeffreys) who expressed in their studies a perfectly clear under-
standing of the robustness idea. They were aware of the perils caused by long 
tails of the functions of error distributions, so they proposed models of distribu-
tion of gross errors and derived robust variants of standard estimates. Russian 
geodesists, for example, in their adjustments of the first order triangulation net-
works allowed lower weights (about half of the original ones) to the observations 
of directions which do not deviate much. 

The initial fundaments to the theory of robust estimation were laid by Swiss 
mathematician P. J. Huber 1964 [1] and American statistician W. J. Tukey 1960 
[5]. Huber’s article “Robust Estimation of Location Parameter” was the first 
fundament of the theory of robust estimation, which introduced an elastic class 
of estimates, called M-estimates, which have become a very useful instrument, 
having established which properties they have (for instance consistency and 
asymptotic normality). He introduced the model of gross errors, replacing the 
strict parametric model ( )F x θ− , with its known distribution F, by the mixed 
model: 

( ) ( ) ( ) ( )1H x F x G xθ ε θ ε θ− = − − + − , 

while a part of data ε  ( 0 1ε≤ < ) may contain gross errors which have an ar-
bitrary (unknown) distribution ( )G x θ− . 
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The causes of deviating from the parametric models are various and four main 
types of deviating from the strict parametric models can be distinguished: 

1) Appearance of gross errors; 
2) Rounding and grouping; 
3) Using an approximate functional mode; and 
4) Using an approximate stochastic model. 
The fundamentals of robust methods were developed in the last century. To-

day there are numerous applications of robust methods, and concurrently better 
and more detailed solutions are sought: [2] [7]-[14]. 

Due to good properties of the robust methods—that it is possible to eliminate 
or decrease the influences of gross errors and outliers on the estimates of distri-
bution parameters, in practice they are used more and more. Therefore, the same 
time, their development results. So the current development and application of 
the robust methods may be classified into the following groups: 

 Improvement of existing methods, such as “A new Perspective on Robust M. 
Estimation” [13]; 

 Solving of delicate (specific) tasks:—for robust hybrid state estimation with 
unknown measurement noise statistics [14]—for optimal allocation of shares 
in a financial portfolio [8]—for robust estimation of 3D human poses from a 
single image [12]—for cubature Kalman filter for dynamic state estimation of 
synchronous machines under unknown measurement noise statistics [9]; 

 Applications in various conditions:—for robust estimation of the sample 
mean variance for Gaussian processes with long-range dependence [2]—for 
robust estimation of 3D human poses from a single image [12]—for robust 
hybrid state estimation with unknown measurement noise [14]—for estima-
tion of mean and variance using environmental data sets with below detec-
tion limit observations [10]; 

 Applications in diverse fields:—for estimation of the sample mean variance 
for Gaussian processes with long-range dependence [2]—for Gaussian sum 
filtering with unknown noise statistics: Application to target tracking [11] 
—robust cubature Kalman filter for dynamic state estimation of synchronous 
machines under unknown measurement noise statistics [9]—for estimation 
of mean and variance in Fisheries [7]—for optimal allocation of shares in a 
financial portfolio [8]—for estimation of mean and variance using environ-
mental data sets with below detection limit observations [10]. 

The proposed PEROBLS D method is aimed at eliminating the influences of 
gross errors and outliers on the estimates of distribution parameters, when only 
one contaminating distribution is present, i.e. in the case of Tukey’s mixed dis-
tribution. 

The key difference between this paper and existing studies is that the 
PEROBLS D method in the estimating procedure uses no distribution censoring, 
unlike the existing methods, but instead a structural decomposition into two 
distributions is used—basic and contaminating ones which have the same mean 
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value and then the parameters of both distributions are estimated. 
Consequently, in the case that both distributions (basic and contaminating) 

are normal, the PEROBLS D method has the following properties: 
1) Unbiased (exact) parameter estimates for the basic distribution, as the most 

important property; 
2) Unbiased (exact) parameter estimates for the contaminating distribution; 
3) Percentage estimates for fractions of basic and contaminating distributions 

in the mixed one. 
The correctness of the method has been verified on exact (expected) values of 

some quantities from the mixed Tukeyan distribution, as well as on an example 
of simulated data for 200 measurements of one quantity. 

Besides, the estimates of the mean and variance for the basic distribution have 
been compared with the same ones obtained by ML method, and the estimate 
basic distribution standard has been also compared with Tukey mad standard 
estimate. 

As has been said, the PEROBLS D estimates are unbiased, whereas the esti-
mates of the basic distriburion standard in both cases, according to ML and Tu-
key mad, are increased. 

The structure of the further presentation is the following. At first definitions 
and notations are given, then basis of PEROBLS D method and the way of solv-
ing the formulated problem. Afterwards the existing robust estimation methods 
—ML and Huber’s mad—are presented. Further on the PEROBLS D method is 
verified on examples and the solutions are compared with existing ones. Finally, 
there are conclusions and references. 

2. Definitions and Notations 

The density function for a standard normal variable Z is given as 

( ) ( )21 exp 2
2

f z z= −
π

, z−∞ < < ∞ . 

Let ( )F z  be the notation of the distribution function for Z. The quintiles of 
Z will be denoted as 1z α− , where α  is the significance level, 1z zα α−= −  and 

( ) ( )1 1 1p Z z F zα α α− −≤ = = − . 

A normally distributed r. v. X with expectation µ  and variance 2σ  has the 
density and distribution functions, respectively: 

( ) ( )f z f z σ=  and ( ) ( ) ( ) ( )d d
x x

F x f x x f z z F z
−∞ −∞

= = =∫ ∫ , with 

( )z x µ σ= − .                           (1) 

Let as consider a random variable (natural sequence of measurements) [15]: 

1 2, , , nX X X , from a normal population and use ( )2,N µ σ , with mean µ  
and standard deviation σ , (i.e. variance 2σ ) where one assumes that the ob-
servations 1 2, , , nX X X  are mutually independent. Arranging them in the 
ascending order of magnitude one obtains order statistics ( ) , 1, 2, ,iX i n= 
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(Figure 1), where the points A and B defined in the following way: 

( )1 0.5
XnA X d+= −  and ( ) 0.5

Zn nB X d−= + ,               (2) 

where d is the width of the rounding interval for observations X. 
With z from Equation (1), it will be analogously: 

( ) ( ) ( )  ( ) ( )  ( ) ( )1 2 1 1X X Z Z
A B

n n n n n n n
z z

Z Z Z Z Z Z Z+ − − +≤ ≤ ≤ ≤ ≤ ≤↓ ↓ ≤ ≤  
, 

( ) ( )1X XAn n
AZ z Zµ
σ +

− < = ≤ 
 

; ( ) ( )1Z ZBn n n n
BZ z Zµ
σ− − +

− ≤ = < 
 

, 

where ( ) ( )( )i iz x µ σ= − . 

3. Basis of PEROBLS D Method1 
The idea of PEROBLS D method has been presented in the Least Squares book 
[16]. 

Instead of assuming the presence of gross errors in the observations within X 
and Z regions, used in the previous methods, in this method the observation 
distribution is defined by means of Tukeyan mixed distribution (Figure 2): 

( ) ( ) ( ) ( )1 21F x F x F xε ε= − + ,                  (3) 

where ( )1F x  is the basic, ( )2F x —the contaminating one, whereas 0 0.5ε< < , 

noting that ε  cannot exceed 0.5, because, in this case ( )2F x  must be taken as 
the basic distribution. (In geodetic applications there is mostly 0 0.3ε< < ). 

In this method the points A and B are partition points only, i. e. they are nei-
ther truncation points nor censoring ones. They are chosen so that in the do-
mains X and Z the contaminating distribution prevails—which is one of the 
prerequisites to find a good (satisfactory) solution of the problem (task). 

Note 1. In geodetic measurements distributions close to the Tukeyan ones are 
frequent. ▲ 

The designations concerning the basic and the contaminating distributions 
are given in Table 1. 

The task is to estimate the parameters of both distributions, of basic and con-
taminating ones. 

4. PEROBLS D Solution 
The parameter estimators for both distributions will be derived from the max-
imal probability of the event: 

( ) ( )( ) ( ) ( ){
( ) ( )( ) ( ) ( ) ( )( )}

1

1 1 ,

X

X Z Z

A Bn

n

A

n Bn nn n

D D z z z z z

D D z z D D

′′

′ ′′ ′ ′′′ ′+ − − +

′′ ′′ ′ ′ ′′ ′′ ′′∧ ∧ ∧ ≤ ∧ ≤ ≤

′ ′ ′ ′ ′′ ′′∧ ∧ ∧ ∧ > ∧ ∧ ∧



 

 
where ( ) ( ) ( )( )1 1 1 dD X X X x′′ ′′ ′′ ′′ ′′= ≤ ≤ + , ( ) ( ) ( )( )1 1 1 dD X X X x′ ′ ′ ′ ′= ≤ ≤ + ,  , etc. 

 

 

1PEROBLS D is an abbreviation of the initial letters: Perović’s Robust Least-Square Method; D—by 
distribution Decomposing. 
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Figure 1. Partition points, A and B. 
 

 
Figure 2. Tukeyan mixed distribution of normally distributed ob-
servations. 

 
Table 1. Designations and terms of the quantities appearing in the basic and the contami-
nating distributions. 

Designations 
Terms o f Quantities 

Basic Distribution Contaminating Distribution 

X ′  X ′′  Random variable (observation) 

1σ  2σ  Standard deviation ( 2 1σ σ> ) 

µ  µ  Expectation 

n′  n′′  Number of measurements (total) 

Xn′  Xn′′  Number of measurements in X region 

Yn′  Yn′′  Number of measurements in Y region 

Zn′  Zn′′  Number of measurements in Z region 

 
Let 

1 1 1

2 2 2

, ,

, ,

B

B

A

A

x A Bz z z

x A Bz z z

µ µ µ
σ σ σ

µ µ µ
σ σ σ

′ − − − ′ ′ ′= = = 
′′ − − − ′′ ′′ ′′= = =


                (4) 

( ) ( )21 exp 2
2

f z z′ ′=
π

, ( ) ( )21 exp 2
2

f z z′′ ′′=
π

. 

Then the likelihood function, up to the proportionality constant k, is: 

( )( ) ( ) ( )

( )( ) ( ) ( )( ) 1 2 ,Y X Z

A BiX

n n n
i iY Z

A

B

L k f z p z z p z z z

f z p z z f z σ σ′′ ′′ ′′− − −

′′ ′ ′ ′′ ′′ ′′= ⋅ ⋅ ≤ ⋅ ≤ ≤

′ ′ ′ ′′⋅ ⋅ > ⋅ ⋅ ⋅

∏

∏ ∏
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where X, Y and Z under product sign mean: ( )( ) ( )( )1
Xn

i iX if z f z
=

′′ ′′=∏ ∏ , etc., and 

where: 

X Y Zn n n n′ ′ ′ ′= + + , X Y Zn n n n′′ ′′ ′′ ′′= + + , n n n′ ′′= + . 

If we also introduce the notations 

( ) ( )d , d ,A Bz z
A BzF f z zzF f

′ ′

−∞ −∞
′ ′ ′ ′′= =′∫ ∫  

( ) ( )d , d ,A Bz z
A BF f z z F f z z

′′ ′′

−∞ −∞
′′ ′′ ′′ ′′ ′′ ′′= =∫ ∫  

( ) ( ) ( )d , d , d ,A B

A B

z z
X Y Zz z

A f z A f z A f zz z z z z z
′ ′ ∞

′ ′−∞
′ ′ ′′ ′ ′ ′ ′ ′′ ′ ′= = =∫ ∫ ∫  

( ) ( ) ( )d , d , d ,A B

A B

z z
X Y Zz z

A z f z z A z f z z A z f z z
′′ ′′ ∞

′′ ′′−∞
′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= = =∫ ∫ ∫  

( ) ( ) ( )2 2 2d , d , d ,B

A

A

B

z z
X Z Yz z

B f z B f zz z z z zB zf z
′ ′′∞

′ ′′−∞
′ ′ ′ ′ ′′ ′′ ′ ′ ′ ′ ′= ′= = ′∫ ∫ ∫  

( ) ( ) ( ), 1 ,B BA A A Ba f z F b f z F′ ′ ′ ′ ′ ′= = −  

( ) ( )( ) ( ) ,AB B A B Ad f z f z F F′′ ′′ ′′ ′′ ′′= − −  

( ) ( )( ) ( ) ,B B AA BAB Ag z f z z f z F F′′ ′′ ′′ ′′ ′′ ′′ ′′= − −  

( ) ( ), , 1 ,X A Y B A Z Bn n F n n F F n n F′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = − = −  

( ) ( ), ,, 1X A Y B A Z Bn n F n n F F n n F′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= = − = −  

then the conditions ln 0L
µ

∂
=

∂
, 

1

ln 0L
σ

∂
=

∂
 and 

2

ln 0L
σ

∂
=

∂
 yield the equations: 

1 1 1 2 2 2

2

1 1 1 1 1

2 2

2 2 2 2 2

ln 1 1 1 0

ln 1 0

ln 1 1  0

A i i i

A

X Z Y
B ABY X Z

Y X Z
A B iY

X Z Y
AB i i

B

X Z

n n nL a b z d z z

n n nL z a z b z

n n nL g z z

µ σ σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ

′ ′ ′′ −∂ ′ ′ ′ ′′ ′′ ′′= + + − + + = ∂ 
′ ′ ′−∂ ′ ′ ′ ′ ′= − + + = 

∂ 
′′ ′′ ′′+∂ ′′ ′′ ′′= − − + + = 

∂ 

∑ ∑ ∑

∑

∑ ∑

 (5) 

solvable only iteratively. There are many methods; here direct iterations are giv-
en. 

However, within system (5), except µ , 1σ  and 2σ , the sums Y iz′∑ , 

iX z′′∑ , iZ z′′∑ , 2
iX z′′∑  and 2

iZ z′′∑ , and the numbers n′  and n′′  are also 

unknown and they should be previously determined. 
For the purpose of determining n′  and n′′  there are many ways. The present 

author has examined a few methods out of which he has adopted the least-square 
one. With three relationships: 

A

B

A X X

B XY XY

n

F n F n n v
F n F n n v
n n n v

′ ′ ′′ ′′+ = + 
′ ′ ′′ ′′+ = + 
′ ′′+ = + 

                      (6) 

where ,X XYv v  and nv  are the corrections to the “observations” ,X XYn n  and 
n, XY X Yn n n= + , first using LS with assuming the “observation” weights: 
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1, 1X XYP P= =  and 1nP = , we find the LS estimates for n′  and n′′ : 

( )1
1n PU NV
D

= − , ( )2
1n MV NU
D

= − , with 

( )
( )

2 2 2

2 2

1 ,
1

1 ,

,A B

A B B B X A X Y B

A B AX BX Y

M F F D MP N
N F F F F U n n F n n F

P F F V n n F n n F

′ ′= + + = −
′ ′ ′ ′′ ′ ′= + + = + + + 
′′ ′′ ′′ ′′= + + = + + + 

 

and then 

1n qn′ =  and 2n qn′′ =  with 
1 2

nq
n n

=
+

. 

In this way the condition n n n′ ′′+ =  is satisfied, but the conditions:  

X X Xn n n′ ′′+ = , Y Y Yn n n′ ′′+ =  and Z Z Zn n n′ ′′+ =  are not satisfied. However, since 
all conditions in Equations (6) cannot be satisfied simultaneously, a compromise 
yielding a solution close to the optimum must be accepted. 

The sums Y iz′∑ , iX z′′∑ , etc., can be also solved in various ways, but the 
present author has chosen the following one. At first we find the sums: 

i iY Y YiX X X′ ′′= −∑ ∑ ∑ , 

( ) ( ) ( )2 2 2
i iY Yi YX X Xµ µ µ′ ′′− = − − −∑ ∑ ∑ , 

( ) ( ) ( )2 2 2
i iX X X iX X Xµ µ µ′′ ′− = − − −∑ ∑ ∑ , 

( ) ( ) ( )2 2 2
i iZ Z Z iX X Xµ µ µ′′ ′− = − − −∑ ∑ ∑ , 

and then by means the asymptotic theory according to which: 

( ) ( ) ( )11

1 d d dn
ni

p
iX x f x x z f z z f z z

n
µ σ µ

∞ ∞ ∞′

′→∞= −∞ −∞ −∞
→′ ′ ′ ′ ′ ′ ′ ′ ′= = +

′∑ ∫ ∫ ∫ , 

( ) ( ) ( ) ( )2 22 2 2
1 11

1 d dn
i ni

pX x f x x z f z z
n

µ σ µ σ
∞ ∞′

′→∞= −∞ −∞
′ ′ ′ ′ ′ ′ ′− −→ =

′∑ ∫ ∫ , 

etc., it follows: 

( ) ( )1 d d

Y Y

nY Y Y

A

p
i

F

X n z f z z n f z zσ µ′→∞

′ ′

′ ′ ′ ′ ′ ′ ′→ ′+∑ ∫ ∫
  

, 

( ) ( )2 2 2
1 d

Y

nY Y

B

p
iX n z f z zµ σ′→∞

′

′ ′ ′ ′ ′− →∑ ∫


, 

one introduces the substitutions: 

2, , ,i X i ZX Z Y i Y Yz n A z n A x n A n Fσ µ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= = = +∑ ∑ ∑  

( ) ( )2 22 2
22

1

1 ,i i Y Y YY Y Yz X X n X n Bµ σ
σ

 ′ ′′ ′′= − + − −  ∑ ∑  

( ) ( )2 22 2
12

2

1 , , .i i D D D DD Dz X X n X n B D X Yµ σ
σ

 ′′ ′ ′= − + − − =  ∑ ∑  

where: 
, ., 1X A Y B A Z BF F F F F F F′′ ′′ ′′ ′′ ′′ ′′ ′′= = − = −  

Using these results the solution of system (5) we have: 
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( )

( )

1 2, , 1, , , , ,

2
1,

, , , ,2
2,

1

,

k i k Y k k Z k B k X k A kY
Y

k
X k X k Y k AB k

k

k k
k

X n A n b n a
n

n A n A n d

µ σ σ

σ
σ

+
 ′′ ′′ ′ ′ ′ ′= − + −



′′ ′′ ′′ ′′ ′′ ′′+ + − 



∑
           (7) 

( ) ( )2 22 2
1, 1 1 1, , , ,

,

2 2
1, , , , 2, ,

1

,

k i Y Y Y k k X k A k A kY
Y k

k Z k B Y kkk B k k

X n n Z a
n

n Z b

X

n

X

B

σ µ σ

σ σ

+ +
 ′ ′ ′= − + − −′

′ ′ ′ ′′ ′′+ − 

∑
        (8) 

( ) ( ) ( )

( ) ( )

2 2 22
2, 1 1

, ,

2 2 2
1 2, , , 1, , ,

1

,

k i X i Z X X kX Z
X k Z k

Z Z k k Y k AB k k k X k k Z k

X X n
n n

n n g n B n B

X X X

X

σ µ

µ σ σ

+ +

+

= − + − + −′′ ′′+

′′ ′′ ′ ′ ′ ′+ − − + + 

∑ ∑
    (9) 

where: 1
X iX

X

X X
n

= ∑ , 1
Y iY

Y

X X
n

= ∑ , 1
Z iZ

Z

X X
n

= ∑ . 

Let T 2 2
1, 2,k k k kµ σ σ =  x  be the vector of parameter estimates in the k-th 

iteration and d the difference vector of these estimates from (k+1)-th and k-th 
iterations, then the iterations should be stopped if 

{ }  10 , 5,6,7,8,9 .q
k q−< ∈d x  

The points of optimal partition, optA  and optB , with ( )opt optA Bµ µ− = − − , 
are found from the condition ( ) ( ) ( )1 f x f xε ε′ ′′− = , where 1 n nε ′− =  and 

n nε ′′= . So one obtains: 

( )2 1
2 2
1 2

2 ln
, , .

1 1opt opt

n n
A A B A A

σ σ
µ µ

σ σ
′ ′′

′ ′ ′= − = + =
−

          (10) 

The advantages of the method are: 
1) Unbiased estimators for µ , 2

1σ  and 2
2σ , if assumptions (4) hold and A 

and B are close to optA  and optB ; and 
2) Minimal variances for µ , 2

1σ . 
The disadvantages of the method are: 
1) A high sensitivity to the choice of the points A and B, (points A and B must 

be close to optA  and optB ), which can result in negative estimates for either of 
the variances 2

1σ  or 2
2σ , or for both; and 

2) Sensitivity to the choice of the initial values for the variances 2
1σ  and 2

2σ , 
which, also, can result in negative estimates for one or both variances. 

Therefore, the method is recommendable for applications comprising a high 
number of observations, (for example 30n > ). 

Note 2. If there exists the basic distribution only (when in Equation (3) 0ε = ), 
the method will yield either 2 2

1 2σ σ=  or negative values for one or both variances. 

5. Some Robust Estimation 

Out of many robust LS methods we shall use here two of them: the method of 
Maximum Likelihood (ML) and Huber's mad estimation of distribution stan-
dard [6] [17]. 
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5.1. The Maximum Likelihood (ML) Method 

The ML method is based on the assumption that in the domain Y there exists 
only the basic distribution, unlike the domaines X and Z where in addition to 
the basic distribution there exist gross errors and outliers. Here the censoring 
points are A and B and they are defined according to Equation (2). 

In the region ( X Z∪ ), due to the presence of gross errors in the observations, 
the distribution of the random variable X is not normal. Therefore, the estimates 
of the parameters µ , and 2σ  are determined on the basis of the probability of 
the event: 

( ) ( ) ( ) ( ){ }1X Zn n nX A D D B X+ −≤ ∧ ∧ ∧ ∧ ≤ , 

where the events { }di i iD X X X x= ≤ ≤ + , 1, ,X Zi n n n= + − , mean that the 
random variable X is within an interval ( ), di iX X x+  (with differentially small 
d 0x > ). 

Then the likelihood function, up to the proportionality constant, is [18]: 

( ) ( ) ( )( ) ( )1

! 1
! !

X ZZX Z

X

n nn nn n n
A Bii n

X Z

nL F Z f z F Z
n n

σ −− − −
= +

= −      ∏ , 

and the ML estimators are the solutions of the equations 

ln 0L
µ

∂
=

∂
, ln 0L

σ
∂

=
∂

. ln 0L
µ

∂
=

∂
, and ln 0L

σ
∂

=
∂

.            (11) 

Equations (11) have no analytical solution and they must be solved iteratively. 
There are several methods; here direct iterations are given: 

( )
( )

( )
( )1  

1
k kX Z

k k k
Y k Y k

f a f bn n
n F

X
a n F b

µ σ σ+ = − ⋅ + ⋅
−

,             (12) 

( ) ( )
( )

( )
( )

22 2 2 2
1 1 1

k k k kX Z
k k k k

Y k Y k

a f a b f bn nm
n F a F

X
n b

σ µ σ σ+ += + − − ⋅ + ⋅
−

,    (13) 

where: 

( )( )22
1 1

1 1, ,Z Z

X X

n n n n
i in n

Y Y

X m
n n

X XX− −

+ +
= = −∑ ∑  

       
, ,k k

k k
k k

A B
a b

a a
µ µ− −

= =  

As initial values we can adopt 0 Xµ = , and 2 2
0 mσ = . 

In the present author’s opinion under the preposition of existing of contami-
nating distribution the method yields increased estimates for 2σ . 

5.2. Huber’s Mad Robust Estimation of Distribution Standard 

For the purpose of estimating an unknown standard σ  Huber 1981 [6] and 
Birch and Mayers 1982 [17] proposed a median estimator for σ : 

( )
0.6745

mad X
σ = , ( )( )| |i jmad X med X medX= − .            (14) 
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6. Results and Discussion 

Example 1. For the sake of verifying the correctness of PEROBLS D method and 
examining the appropriateness of Maximum Likelihood (ML) method in Table 
2 are presented the exact (expected) values of some quantities from the mixed 
Tukeyan distribution (3), with 0.8n n′ = , 0.2n n′′ =  ( )20%ε = , 2

1 1σ = ,  
2
2 4σ = , 5µ =  and symmetrical partitioning ( X Zn n= ). The numbers Xn , 

Yn  and Zn  and the other quantities in the table are presentd for the case  
610n = . 

According to data in Table 2, for two methods—PEROBLS D and ML—the 
estimates for the corresponding quintiles are calculated and presented in Table 3. 
The results of estimating the variance 2

1σ  of the basic distribution by using ML 
methods indicate their appropriateness. 

Example 2. Simulated Data. Using normally distributed N(0, 1) random num-
bers from Tables of Bol’shev and Smirnov 1968 [19] the mixed Tukeyan distri-
bution (3) is found (Table 4), with normal distributions: basic  

( )2
15, 1N µ σ= =  with 160n′ =  and contaminating ( )2 2

2 15, 4 4N µ σ σ= = =   
with 40n′′ = , ( 200n⇒ = ); with estimates: 
basic: 4.965X = , 2

1 1.1070σ = , 
contaminating: 5.000X = , 2

2 4.1554σ = . 
According to Equation (10), for 2

1 1σ =  and 2
2 4σ = , the optimal partition 

points are: 

2.6452, 7.3548,OPT OPTA B= =  

for which one obtains 6.5 percent partition with 8Xn =  and 5Zn = . 
 
Table 2. The exact (expected) values of some quantities from the mixed Tukeyan distri-
bution (3), with 0.8n n′ = , 0.2n n′′ =  ( )20%ε = , 2

1 1σ = , 2
2 4σ = , 5µ =  and sym-

metrical partitioning ( X Zn n= ). 

Designations 
Partitioning X Zn n+  [%] (Censoring—for ML) 

10 20 30 40 

(A; B) (3.0; 7.0) (3.5; 6.5) (3.82; 6.18) (4.04; 5.96) 

Xn  49,931 98,771 150,719 197,945 

Yn  900,138 802,458 698,562 604,110 

Zn  49,931 98,771 150,719 197,945 

X iX∑  0,109,674.4 0,269,786.7 0,460,419.4 0,646,195.1 

Y iX∑  4,500,689.1 4,012,288.6 3,492,809.5 3,020,552.9 

Z iX∑  0,389,636.5 0,717,924.7 1,046,771.0 1,333,252.0 

( )2

i XX
X X−∑  0,032,651.4 0,062,535.6 0,092,943.8 0,120,914.5 

( )2

i YY
X X−∑  0,749,827.2 0,458,297.8 0,273,552.7 0,165,779.4 

( )2

i ZZ
X X−∑  0,032,651.4 0,062,535.6 0,092,943.8 0,120,914.5 

( )2

1

n

ii
X X

=
−∑  1600000.0 1600000.0 1600000.0 1600000.0 
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Table 3. The results of Estimating the Normal-Distribution Parameters by using PEROBLS 
D, and ML methods according to the exact (expected) values of the corresponding sums 
given in Table 2. 

Method Formula Quantity 
Partitioning [%] (Censoring—for ML) 

10 20 30 40 

PEROBLS D (7) 
µ  

5.0000 5.0000 5.0000 5.0000 

ML (12) 5.0000 5.0000 5.0000 5.0000 

PEROBLS D (8) 
2

1σ  
1.0000 1.0000 1.0000 1.0000 

ML (13) 1.3839 1.3247 1.2920 1.2732 

PEROBLS D (9) 
2
2σ  

4.0001 4.0001 4.0001 4.0001 

ML - - - - - 

 
Table 4. The 200 ( 200n = ) simulated observations of the Tukeyan mixed distribution (3), 
with 5µ = , 2

1 1σ = , 2
2 4σ =  and 0.20ε = ; ( 40n′′⇒ = , 160n′ = ). 

iX  in  iX  in  iX  in  iX  in  

0.3 1 3.6 4 5.0 11 6.4 4 

0.9 1 3.7 3 5.1 5 6.5 2 

1.9 2 3.8 5 5.2 5 6.6 4 

2.2 1 3.9 5 5.3 5 6.7 2 

2.5 2 4.0 3 5.4 9 6.8 2 

2.6 1 4.1 3 5.5 7 6.9 1 

2.7 1 4.2 7 5.6 5 7.0 1 

2.8 1 4.3 7 5.7 7 7.1 2 

2.9 2 4.4 8 5.8 8 7.3 1 

3.0 3 4.5 7 5.9 5 7.4 1 

3.2 1 4.6 7 6.0 5 7.5 1 

3.3 1 4.7 4 6.1 2 8.3 1 

3.4 2 4.8 3 6.2 4 9.2 1 

3.5 3 4.9 6 6.3 4 9.9 1 

 

In Table 5, for various choices of the partition points A and B, a survey of the 
parameter estimates for the basic and contaminating distributions obtained by 
different methods is given. The parameter estimates in the PEROBLS D method 
are close to the exact ones, whereas in the case of application of the ML and Hu-
ber-mad methods the variance of the basic distribution is overestimated. 

The best way is to choose the partition points A and B for the PEROBLS D 
method from the frequency histogram (see Figure 3) by accepting the x values 
for which it, to the left and right of the distribution centre, begins to have values 
above the smoothing curve for the normal distribution. 

Recommendation. The estimate of standard σ , for the purpose of drawing 
the smoothing curve can be calculated according to the standard formula, 

( ) ( )22 1i Xm X X n= − −∑  where 2% - 5% rejected outlying observations not 
taken into account. ▲ 
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Table 5. The parameter estimates of a normal distribution based on 200 simulated ob-
servations of the Tukeyan mixed distribution with 5µ = , 2

1 1σ = , 2
2 4σ = , 160n′ =  

and 40n′′ = , ( )0.20ε = . 

Method Formula Quantity 
Aopt = 2.65 
Bopt = 7.35 

6.5% 

A = 2.85 
B = 6.85 

10 % 

A1 = 3.15 
B1 = 6.55 

16.5% 

A2 = 3.15 
B2 = 6.15 

23.5% 

PEROBLS D (7) 
µ  

5.0130 5.0448 5.0381 5.0188 

ML (12) 4.9670 4.9659 4.9761 4.9786 

PEROBLS D (8) 
2

1σ  

1.0382 1.2996 0.9670 0.7963 

ML (13) 1.4721 1.4316 1.4299 1.4429 

Huber (mad) (14) 1.4067 

PEROBLS D (9) 2
2σ  3.8720 7.6081 3.3849 2.8232 

 

 
Figure 3. Frequency Histogram for 200 simulated observations of the Tukeyan 
mixed distribution (3) with 5µ = , 2

1 1σ = , 2
2 4σ =  and 0.20ε = . 

7. Conclusions 

On the basis of the obtained results in Examples 1 and 2 we can conclude the 
following: 

1) On the basis of exact (expected) values from Example 1 the validity of the 
PEROBLS D method in the parameter estimation (expectation and variance) for 
both distributions in the Tukeyian mixed distribution of observations is con-
firmed. Here the variance estimates for both distributions, basic and contami-
nating ones, are correct, i.e. their values are exact. 

2) On the basis of simulated realistic measurements from Example 2 good (sa-
tisfactory) parameter estimates for both distributions are also confirmed. 
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