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ABSTRACT 
 

Fluid-flood and other improved oil recovery techniques are becoming prominent in global 
petroleum production because a large proportion of production is from mature oil fields. Although 
water flooding and gas injection are well established techniques in the industry, several of the 
screening criteria in literature are discipline which could sometimes be subjective. This work used 
experimental design techniques to develop proxy models for predicting oil recovery under water-
flood and gas-flood conditions. 
The objective of the study is to develop a quantitative screening method that would allow for 
candidates to be evaluated and ranked for water flood or gas injection. The model was applied to 
some field cases and compared with published models and the well-known Welge Analysis 
method. The coefficient constants for the oil formation volume factor for water flooding and gas 
injection was 0.0139 and 0.0434 respectively. Similarly, the coefficient constants for water injection 
and gas injection for the generated proxy model was -2.34* 10

-8
 and -6.1 *10

-5 
respectively. The 

results show that the proxy models developed are quite robust and can be used for first pass 
screening of water and gas flood candidates.   
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ABBREVIATIONS 
 
ANN : Artificial Neural Network 
DOE : Design of Experiment 
RSM  : Response Surface Methodology 
IOR : Improved Oil Recovery 
EOR : Enhanced Oil Recovery 
PVT : Pressure Volume Temperature 
ED : Experimental Design 
EOS : Equation of State 
BWPD : Barrels of Water per day 
MMSTB : Million Stock tank barrels 
MMSCF : Million Standard Cubic Feet 
BSCF : Billion Standard Cubic Feet 
K : Permeability 
Ø : Porosity 
µ : Viscosity 
h : Formation Thickness 
S : Saturation 
RF : Recovery Factor 
P : Pressure 
PV : Pore Volume 
B : Formation Volume Factor 
OOIP : Original Oil In Place 
 

SUBSCRIPTS 
 
o : Oil 
w : Water 
g : Gas 
I : Initial 
Wc : Connate Water 
av : Average 

 
1. INTRODUCTION 
 
Improved oil recovery comprises any of the 
various methods apart from the primary recovery 
method (reservoir drive mechanism) designed to 
improve the flow of hydrocarbons from the 
reservoir to the wellbore; it is the second stage of 
hydrocarbon production during which an external 
fluid such as water or gas is injected into the 
reservoir through injection wells located in rocks 
that has fluid communication with the production 
wells. Many researchers have performed 
laboratory studies to show that CO2 injection is a 
very effective enhanced oil recovery process for 
light and medium gravity reservoir oils [1]. 
Shtepani [2] discussed PVT experiments, special 
coreflood experiments and numerical coreflood 
simulations to determine the micro-scale 
conformance of the CO2 displacement and 
identify CO2 breakthrough characteristics. He 
gave serious attention to the importance of water 

injection and other factors related with CO2 
injection, which could extend the miscible CO2-
EOR technology to a broader range of oil 
reservoirs. He concluded that an accurate EOS 
characterization and phase behavior of reservoir 
fluids, based on extensive PVT measurements 
was key for a successful design. 
 

According Alvarado and Manrique [3] improved 
oil recovery methods compass enhanced oil 
recovery methods as well as new drilling and well 
monitoring technologies, intelligent reservoir 
management and control, advanced reservoir 
monitoring techniques as well as application of 
different enhancements of primary and 
secondary recovery processes. 
 
Several methods are available in assessing 
recoveries; for example laboratory/core analysis 
as well as intelligent well systems; this research 
will focus on the use of Design of Experiment 
and Response surface methodology. 
 
Unlike primary recovery, IOR techniques are 
technically and economically intensive and 
require proper planning. This method has been 
extensively applied in assessing production 
uncertainties in channelized reservoirs [4] and 
creating development strategy alternative for Oil 
fields.  Carreras et al., 2006 [5] focused on the 
Tahiti field in deep water Gulf of Mexico with 
primary hydrocarbon-bearing turbidite sands. 
Due to significant uncertainties remaining after 
appraisal, probabilistic methods were used to 
assess development alternatives.  They applied 
the classical ED method to generate reservoir 
simulation models for the P10, P50 and P90 
reservoirs of the field. The field development was 
done by performing ED runs which incorporated 
uncontrollable uncertainties and decisions as 
factors such as well counts and injection timing. 
 

This method was used to manage subsurface 
uncertainties in the Niger Delta by Ogbalor and 
Peacock [6]. They concluded that experimental 
design provides a systematic consistent 
approach to managing uncertainties in field 
development studies because it reduces the 
amount of time and cost needed to analyse the 
impact of a range of subsurface parameters on 
business decisions. Separate response surface 
model should be generated for in-place as well 
as recoverable volumes, as the key sub-surface 
parameters which drive each model are likely to 
be different. 
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Reis [7] applied the Experimental Design and 
Response Surface Methodology in Risk analysis, 
where one RSM was built to model the decision 
variable and another was built to represent an 
objective function that takes into account 
dynamic data. A relationship among the 
uncertainty variables obtained from the RSM of 
the objective function was applied to the RSM of 
the decision variable to constrain the model, 
enabling Risk analysis with history match. The 
results obtained were compared with that of an 
Artificial Neural Network (ANN). 
 
Gupta et al. [8] presented a statistical method for 
performing history matching using experimental 
design framework. The objective of the 
experimental design based history matching was 
to independently quantify ultimate recovery for 
the studied field based on the production history, 
primarily water production and pressure 
matches. Their method quantifies the probability 
for each scenario based on identified history 
matching parameters. This methodology can 
easily be extended to include differential weights 
for history matching parameters. The success of 
the method depends on the generation of 
efficient design and subsequent model for 
acceptable modeling error. 
 
Cebastiant and Osbon [9] presented a 
comparison between the Experimental Design 
method and the simpler and quicker Monte-Carlo 
probabilistic technique used to manage 
subsurface uncertainty and provide estimates of 
hydrocarbon in-place and ultimate recovery. 
Some case studies were used to illustrate this 
and they concluded that ED tend to produce a 
wider ultimate recovery distribution compared to 
the probabilistic because the ED has a tendency 
to introduce more dependencies between input 
variables. These dependencies occur as a result 
of minimizing the simulation runs by combining 
multiple uncertainties. It was also realized that 
ED handled the dependencies on recovery factor 
more thoroughly than the probabilistic method. 
 
Robertson, [10] discussed laboratory works 
showing examples of improved recovery from 
low salinity water floods. He tried to quantify the 
improved oil recovery potentials from low-salinity 
waterfloods for specific fields. In his conclusion, 
he showed that oil recovery tended to increase 
with lower salinity floods. 
 
Li and Friedmann, [11] introduced a new method 
to effectively generate a response surface 
although, the input parameters have strong non-

linear effects; the results showed that this 
method could successfully generate a response 
surface when the non-linear effects are normally 
distributed. 
 

2. METHODOLOGY 
 

Pareto chart and Placket Burma design were 
used to identify the nine imputed factors, and 
validation was done using Yale’s Algorithms: 
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Using 20 experiments, a response surface was 
built using linear Equations (Equation 2) to 
describe the relationship between the recovery 
factor and the identified factors [12]. 
 
� = �� + ����+. . . . . . . . . . . . +���� + �																					(2) 
 
The fluid proxy models obtained were validated 
using secondary data: seven cases for the water 
flooding, and four cases for the gas injection 
problem. The results were compared with the 
Guthrie and Greenberger [13] Predictive model 
(Equation 3) and Buckley Leverett/ Welge 
analysis method (Equation 4 and 5) 
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3. RESULTS AND DISCUSSION 
 
The principal factors that affect each process 
were identified: Water-floodable Pore volume; 
Absolute Permeability; Capillary Pressure; 
Reservoir Pressure; Reservoir Depth; Fluid 
viscosity; hydrocarbon in Place at start of flood; 
Connate water saturation; Effective permeability 
measured at the immobile connate water 
saturation; Relative permeability; fluid saturation 
at start of flood; formation volume factor; injection 
rate and Pressure. The pareto chart shows that 
the interaction between the relative permeability 
to oil and oil formation volume factor BE has the 
highest effect. The coefficient constants shows 
the changes caused by the different parameters 
and their effects on oil recovery. 
 

For the water-flood case; the proxy model 
generated is given by the equation: 
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For the gas injection under conditions of miscible 
flooding in non-dipping reservoirs; the proxy 
model generated is given by the equation: 
 
����� = �� + ����� + ���� + ���� + ������ + ����� + ���

+ ����� + ���� + ���																													(7) 
 
Where the constants are as shown in Table 1. 
 
From Table 2 it can be seen that Buckley 
Leverett/ Welge Analysis over-estimates 
recovery factor; this is because it considers 
recovery factor as a function of displacement 
efficiency only, areal and volumetric efficiencies 
are not accounted for. It can also be seen that 
the recovery factor and cumulative oil Produced 
follow the same trend in all cases; at high 
viscosities and water saturation, there is a close 
correlation between the recovery factor using 
Guthrie and Greenberger Water-Flood Predictive 
model and Buckley-Leverett/ Welge’s Analysis. It 
can also be observed that all cases apart from 
Case 1, 2 and 7, the cumulative oil produced in 
MMSTB calculated, predicted and obtained are 
close for the other cases. 
 
From Table 3, it can be observed that Buckley 
Leverett/ Welge’s Analysis predicts high 
recoveries; as stated earlier; recovery factor is a 
function of displacement efficiency only, though 
the Cumulative Oil Produced follows the same 
trend as the other cases; it can also be seen that 

there is a close correlation between the recovery 
factors and Cumulative Oil Produced. 
 

These key parameters such as reservoir 
heterogeneity, dip, mobility ratio of the CO2 to oil, 
injection rate, volume of CO2 available affect 
performance of the recovery process and the 
nature of the reservoir fluids [14]. Proxy models 
were generated for the primary recovery and 
water flood oil recovery from the simulation 
results and Monte Carlo simulation was run using 
the proxy equations [15]. New statistical proxy 
model was developed by Jaber et al., [16] which 
showed how to improve recovery of oil from a 
carbon dioxide-water alternating gas flooding 
operation in a heterogenous reservoir. Four 
parameters were used in the proxy modeling as 
a function for incremental recovery of oil. A grid-
based smart proxy model was developed for 
water flooding improvement under difference 
scenarios of production and injection through 
experimental design and data mining processes. 
A training of sequential neural network model 
was used to construct the proxy model [17]. 
  

Figs. 1 and 2 shows the recovery factors in 
fraction against the different cases under 
consideration for both water flooding and gas 
injection. Buckley Leverett method stands out in 
the gas injection but was not very distinct in the 
water flooding scenario. 
 

Fig. 3 shows the Pareto chart that indicates the 
main factors that affect oil originally in Place 
(OOIP), the relative permeability to oil and oil 
formation volume factor stands out clearly to 
affect the recovery process. 
 

 
 
 

Fig. 1. Plot of recovery factor (fraction) versus case studies (water-flooding) 
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Table 1. Showing the constants and values for the proxy model 
 

Constant Value Constant Value 
A0 -0.8051 B0 0.18565 
A1 2.6519E-07 B1 -9.1385E-07 
A2 -3.171E-06 B2 0.0434 
A3 1.5834E-06 B3 -0.00061 
A4 -0.01943 B4 4.497E-06 
A5 0.000217 B5 3.566 
A6 0.0005 B6 -2.234E-06 
A7 0.00649 B7 -0.1320 
A8 1.493 B8 -1.2471 
A9 0.0139 B9 -3.8694E-07 
A10 -2.34E-08   

 
Table 2. Results obtained using case studies (water- flooding) recovery factor (fraction) 

 
Case Study Guthrie and 

Greenberger model 
Buckley Leverett/Welge 
Analysis 

Study 
database 

1 0.05 0.53 0.6 0.06 
2 -0.02 -0.21 0.56 -0.05 
3 0.19 0.38 0.45 0.42 
4 0.12 0.18 0.49 0.18 
5 0.131 0.27 0.38 0.089 
6 0.5 0.66 0.43 0.15 
7 0.16 0.22 0.15 0.07 

 
Table 3. Results obtained using case studies for gas injection (recovery factor) 

 
Case This Study Guthrie and Greenberger Buckley Leverett/Welge Analysis 
1 0.05 0.01 0.33 
2 0.03 0.03 0.4 
3 0.07 0.07 0.31 
4 0.05 0.01 0.34 

 

 
 

Fig. 2. Plot of recovery factor (fraction) versus case studies (gas injection) 
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Fig. 3. Pareto chart for OOIP 
 

4. CONCLUSION 
 

Recovery factor of any improved oil recovery 
process can be expressed as a function of 
reservoir rocks and fluid properties; this function 
can be used to predict recoveries before 
extensive simulations are done. Design of 
Experiment and Response Surface Methodology 
can be used with a high degree of accuracy to 
predict oil recovery factors. 
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