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Abstract 

In this paper, we propose a new online system that can quickly detect malicious spam emails and 
adapt to the changes in the email contents and the Uniform Resource Locator (URL) links leading 
to malicious websites by updating the system daily. We introduce an autonomous function for a 
server to generate training examples, in which double-bounce emails are automatically collected 
and their class labels are given by a crawler-type software to analyze the website maliciousness 
called SPIKE. In general, since spammers use botnets to spread numerous malicious emails within 
a short time, such distributed spam emails often have the same or similar contents. Therefore, it is 
not necessary for all spam emails to be learned. To adapt to new malicious campaigns quickly, on-
ly new types of spam emails should be selected for learning and this can be realized by introducing 
an active learning scheme into a classifier model. For this purpose, we adopt Resource Allocating 
Network with Locality Sensitive Hashing (RAN-LSH) as a classifier model with a data selection 
function. In RAN-LSH, the same or similar spam emails that have already been learned are quickly 
searched for a hash table in Locally Sensitive Hashing (LSH), in which the matched similar emails 
located in “well-learned” are discarded without being used as training data. To analyze email con-
tents, we adopt the Bag of Words (BoW) approach and generate feature vectors whose attributes 
are transformed based on the normalized term frequency-inverse document frequency (TF-IDF). 
We use a data set of double-bounce spam emails collected at National Institute of Information and 
Communications Technology (NICT) in Japan from March 1st, 2013 until May 10th, 2013 to eva-
luate the performance of the proposed system. The results confirm that the proposed spam email 
detection system has capability of detecting with high detection rate. 
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1. Introduction 
Emails have become one of the most frequently used methods for cyber attacks. The most worrying email-based 
attack is Targeted Malicious Email (TME) [1] [2]. In TME, attackers send malicious emails to certain people 
targeted in an organization, such as executives of large companies, high-ranking government personnel, military 
officials and even famous researchers, in order for the attackers to obtain valuable confidential information and 
latest research of the targeted people. In TME, an email often has an attachment with malicious codes that can 
be installed automatically upon opening without the victims realizing it. In some cases, the victims’ computer 
will become the back door for the attackers who in turn have the authority to enter the network of the targeted 
persons and thus steal confidential information. 

Another typical email-based cyber attack is the malicious spam email attack, which aims to spread numerous 
emails with Uniform Resource Locator (URL) links leading to malicious websites. Previously, malicious codes 
were sent through the attachment of such spam emails. However, many successful filters have been developed to 
detect malicious attachments. Thus, attackers are now turning to malicious spam campaigns that attack using the 
links attached in the emails. According to the Symantec annual report in 2014 [3], about 87 percent of scanned 
spam messages contained at least one URL hyperlink. Moreover, recent findings by Symantec [4] show a sharp 
rise of emails containing malicious links, from 7% in October 2014 to 41% in the following months. Apart from 
that, currently, attackers also use more relevant email contents [1] that are specific to their victims’ line of work, 
besides addressing the name of the recipient in the email body to convince the victim that the email received is a 
normal email. For instance, a fake email notification regarding a conference or journal targeted towards a 
recipient with academic status, notifications regarding false documents such as telecommunication service bills, 
fax and voicemail in which the victims are given a link to get more information [4]. This technique is called 
Social Engineering [5], which Hadnagy [6] defines as “The Art of Human Hacking”. It becomes difficult for 
normal users to distinguish not only between non-malicious and malicious spam emails but also spam email 
from normal emails. 

The objective of this paper is to detect the malicious spam emails so that general users can be protected from 
being re-directed to malicious websites. For this purpose, we propose an autonomous online system for detecting 
malicious spam emails. In general, it is not easy to collect spam emails from individual persons because it is not 
usually permitted to access personal email spools. Therefore in the proposed system, we collect double-bounce 
spam emails that are delivered to unknown users. From the collected spam emails data, a classifier model is used 
to learn and classify the malicious spam emails. The updated connection weights of the classifier model are sent 
to a user’s mailer software to improve the malicious spam email detection ability. Jungsuk [7] points out that the 
live period of malicious URLs is often very short, usually within a few days; thus, it is expected that introducing 
incremental learning to malicious spam email detection will be effective. The system can learn from the recent 
spam emails so that the spam email detection system is always up to date. On the other hand, spammers often 
use botnets to spread spam emails. For example, a botnet called Rustock which consists of approximately 1 
million infected computers that networked together, is capable of sending up to 30 billion spam emails every 
day [8]. Since the distribution of such spam emails is done in a short time, we assume that the spam emails have 
the same or similar contents in general [9]. Hence, we adopt the Locality Sensitive Hashing (LSH) [10]-[14] to 
quickly select important training data to be learned. For this purpose, we adopt Resource Allocating Network 
with Locality Sensitive Hashing (RAN-LSH) as a classifier model in the proposed detection system. This model 
has the following two important properties: 1) the learning is carried out incrementally; and 2) only data within 
an untrained region are selected and learned even when a large amount of data is given. 

This paper is organized as follows. Section 2 gives a brief explanation of RAN-LSH. The proposed system for 
detecting malicious spam emails is presented in Section 3. In Section 4, the performance of the spam email 
detection system is evaluated for a set of 20,448 double-bounce emails collected from 1st March, 2013 to 10th 
May, 2013. Finally, conclusions and future work are addressed in Section 5.  
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2. Resource Allocating Network with Locally Sensitive Hashing (RAN-LSH)1 
Figure 1 demonstrates the overall architecture of the spam email detection system. In this section, we give a 
brief explanation of the RAN-LSH classifier [15] illustrated in Figure 1(c). RAN-LSH is the extended model of 
the Resource Allocating Network (RAN) [16], where LSH is adopted to select essential training data and Radial 
Basis Function (RBF) bases for fast learning. There are three main components in RAN-LSH: hash table, data 
selection and classifier. 

Algorithm 1 shows the overall learning procedures of RAN-LSH. During the initial learning phase (Lines 1 - 
5), initial training data are used to obtain the most suitable values of the following two important parameters: 
RBF width σ  and the number of partitions P . In addition, initial data are also used to obtain an initial hash 
table and initial structure of the classifier. After that, the incremental learning is carried out whenever training 
data are given to learn (Lines 7 - 17). In LSH, similar data are allocated in the same hash entry with a high 
probability. Therefore, the number of hash entries determines the granularity of input space representation, and 
too large number of hash entries would result in both high computational and memory costs in the data selection. 
Therefore, it is important to design the hash functions such that a suitable number of hash entries are created. 

In RAN-LSH, we adopt Principal Component Analysis (PCA) to generate a proper number of hash functions 
by controlling the threshold of the accumulation ratio aθ . Accumulation ratio ( )lA U  is the ratio of input 
components in the approximated subspace over those in the whole input space [17]. Giving a proper value of 

aθ  based on a tolerant approximation error, a proper number of hash functions is automatically determined by 
selecting the number of partitions P  via the cross-validation. 

Let l  be the subspace dimensions obtained by PCA. Then, the following linear transformation is considered 
to define hash values in LSH:  

T
l=V U x                                             (1) 

where { }1, , lv v= V , { }1, , l= U u u  and x  are the l -dimensional projection vector, the matrix of l  

eigenvectors, an I -dimensional input vector, respectively. Each projection vectors ( )1, ,iv i l=   is then divi-  
 

 
Figure 1. Network structure of the proposed autonomous malicious spam email detection system.                       

 

 

1This work has been submitted to a journal and currently under review. 
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ded into P  partitions with equal size. aθ  controls the number of eigenvectors lU . To obtain a hash code, 
data is first projected on all the eigenvectors iu  and the hash code is obtained by combining the encoded values 
for the projections. When a large aθ  is adopted, the number of eigenvectors tends to become large and this 
would cause elongation of the length of a hash code. 

As shown in Algorithm 1 (see Lines 7 - 17), the incremental learning of RAN-LSH is carried out not only for 
RAN-LSH classifier but also for the hash table. Let us briefly explain the learning procedures in the following 
subsections.  

2.1. Updating Hash Table 
Algorithm 2 illustrates the steps to create and update the hash table which is used in RAN-LSH learning 
algorithm (Lines 4, 8 and 17 in Algorithm 1). Each subregion is allocated to an entry in a hash table, where 
each entry is composed of five items: hash value ( )eh x , prototype ex , margin flag M

eF , outlier flag O
eF  

and the occurrence frequency eN  (Figure 1: top right). The index or a hash value is used as a key to find a 
matched entry e  of a similar item which has been registered previously in hash table (see the first condition in  
Line 6). Hash values ( ) ( ) ( ){ }1 , , lH v H v= h x  are a set of hash functions ( )iH v , which are given as 
follow:  

( )
{ }{ }min max , ,

max ,1
i i i i

i
i i

v v v v
H v P

v v

− + −

+ −

  −  =   −   

                      (2) 

where iv+  and iv−  are the upper and lower values of projections iv  on the i th eigenvector iu , respectively. 
Here, P  is the number of partitions which determines the granularity for a projection iv . 

The next item is prototype ex . A prototype is the mean vector of all data allocated to each entry (Lines 7 and 
11) which is calculated as follows:  

( ) ( )
1

n

e e i
i

e
e

N

N n
=

′ ∗ +
=

+

∑ x x
x                                     (3) 
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where e′x  and ix  are the previous prototype which is registered in the entry e  and training data that belong 

to s th subset of unique hash values i s∈ 

x X , respectively. Meanwhile, eN  is the previous occurrence 
frequency of the entry e  and n  is the number of training data that has a similar hash value. ex  is regarded 
as the representative point of the subregion. 

The third item is the margin flag M
eF  and it is calculated as follows (Line 12):  

( )( )
( )

0,

1, otherwise
e mM

e

z
F

θ ∆ ≤= 


x
                                  (4) 

where the output margin z∆  is given by subtracting the second largest network output ( )k ez ′′ x  from the 

largest network output ( )k ez ′ x  as follows: 

( )
{ }

( )
{ }

( )
1, , 1, , \

arg max arg maxe k e k e
k K k K k

z z z′ ′′
′ ′′ ′∈ ∈

∆ = −
 

x x x                          (5) 

The fourth item is the outlier flag O
eF  which is determined as follows (Line 12): 

( )
( )( )

( )

0, 0

0,   &  

1, otherwise

M
e

O
e m e o e N

F

F z Nθ θ θ

 =
= ≤ ∆ < <



x                           (6) 

The last item is the occurrence frequency eN  of similar data in an entry. Whenever a new training data is 

assigned to an entry, the occurrence frequency is increased by one. The details of margin flag M
eF  and outlier  

flag O
eF  are discussed in the following Section 2.2 and 3.4, respectively.  

2.2. Data Selection and RBF Bases Selection Using LSH  
When a large number of data are given simultaneously under an incremental learning environment, it is impor- 
tant to learn only essential data in a classifier model. Obviously, this is because the learning must be completed 
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as quickly as possible; otherwise, the next data may be given before the learning is completed. In RAN-LSH, the 
data selection is conducted by using LSH. First, all dN  training data in a given training set are projected to l  
eigenvectors. Then, for each training data, the projection value is encoded into a hash code whose granularity is 
determined by the number of partitions P , and the obtained hash codes are transformed into a hash value. 

If a matched entry with the same hash value is found and the margin flag M
eF  is “1”, it means the classifier 

is well trained (Line 6 in Algorithm 2). Then, the mean vector is calculated and the occurrence frequency eN  
is incremented by n . Otherwise (Line 10 in Algorithm 2), the output margin z∆  in Equation (5) is calculated  
and the margin flag M

eF  and outlier flag O
eF  are updated by Equations (4) and (6), respectively. Note that the 

training data associated with the margin flag 1M
eF =  are eliminated from the training set (see Algorithm 1 

Lines 12 - 14). On the contrary, if the margin flag M
eF  is “0”, it means a given data should be trained. After the 

learning phase, the margin flag M
eF  would be updated. Nevertheless, updating the margin flag of every 

prototype in the hash table would increase the learning time. As mentioned before, the prototype with 1M
eF =   

means the classifier is “well-trained” around the prototype. Thus, this prototype does not need to be updated. 
Meanwhile, prototype with 0M

eF =  should be updated because there would probably be regions that have 
become “well-trained” after the learning phase (Line 17 in Algorithm 1 and Line 12 in Algorithm 2). 

LSH is also used to find RBF bases near to the training data (Lines 8 - 13 in Algorithm 3). In RAN-LSH, 
only the connection weights connected to the selected RBF bases are updated in the following procedures. 
Firstly, the hash values of RBF bases ( )jh c  are retrieved from a hash table. Next, the LSH distance jd  for 
each j th RBFs is calculated as follows:  

 

 



S.-H.-A. Ali et al. 
 

 
48 

( ) ( ) ( ) ( )( )_ _
1

l

j j x i cj i
i

d H v H v
=

= − = −∑h x h c                           (7) 

Then, only RBF bases whose LSH distance is less than a threshold pθ  are selected for a learning purpose. 
This is because it is considered that if the LSH distance is large, the RBF output would become very small and 
the weight update could be negligible. Finally, the selected RBF bases are used to solve the linear equation in 

=ΦW D  [18].  

2.3. RAN Classifier   
Let the number of inputs, RBF units, and outputs be I , J , and K , respectively. RBF outputs  

( ) ( ) ( ){ }T
1 , , Jy y= y x x x  and the network outputs ( ) ( ) ( ){ }T

1 , , Kz z= z x x x  of inputs { }T
1, , Ix x= x  

are calculated as follows:  

( ) ( )
2

2exp ,    1, ,j
j

j

y j J
σ

 − = − =
 
 



x c
x                          (8) 

( ) ( ) ( )
1

,    1, ,
J

k kj j k
j

z w y k Kξ
=

= + =∑ x x                           (9) 

where { }T
1, ,j j jIc c= c , 2

jσ , kjw  and kξ  are the center of j th RBF unit, the variance of the j th RBF 

unit, the connection weight from the j th RBF unit to the k th RBF unit and the bias, respectively. 
Algorithm 3 shows the learning algorithm of RAN classifier. In RAN-LSH, RBF centers are not trained but 

selected based on the output error. If the output error is large, it indicates that a new RBF unit should be added 
(Lines 5 and 22). As mentioned above, only connection weights for active RBF units are updated (Lines 15 - 
17).  

3. The Proposed Malicious Spam Email Detection System 
Figure 1 illustrates the architecture of the proposed autonomous online malicious spam email detection system 
which is composed of three components: 1) autonomous spam email collection system; 2) text processing and 
feature transformation; and 3) RAN-LSH classifier embedded with the data selection and outlier detection 
mechanisms. 

As mentioned in Section 2.2, learning all the given data is not a good strategy under incremental learning 
environments because the learning may not be completed before a new data set is given [19]. To enhance the 
adaptibility to dynamic environments, the learning should be carried out with essential data that are selected in 
an online fashion. There are two types of essential data for a learning purpose. The first type is the data located 
close to a class boundary [20], while the other is the data located outside of the learned region (i.e., outlier). In 
order to ensure fast and accurate learning, the data selection mechanism should be introduced into a classifier 
model to find such essential data from a given chunk of data. 

The first type of essential data has been discussed in Section 2.2. On the other hand, the second type of 
essential data are selected by the outlier detection. This type of essential data selection is introduced into the 
previous RAN-LSH classifier. The outlier detection relies on the output margin and the number of occurrence of 
similar data in the input space which are represented by outlier flag O

eF . 
In the following subsection, we explain the details of the three components of the autonomous online 

malicious spam email detection system, as well as the autonomous labeling system.  

3.1. Autonomous Spam Email Collection System 
Figure 1(a) illustrates the process of obtaining double bounce emails. Let us consider a case that a spammer 
sends a large number of emails. In many cases, almost all emails will reach existing users. However, it is very 
likely that some email addresses are no longer in use for some reason. Therefore, the email server would return 
such emails with unknown addresses to the sender. If the spammer intends to send a malicious email, it is also 
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likely that the spammer has faked the originating address and such emails would be re-sent to the receiver. This 
type of unreachable error email is called “double-bounce email” [7] and they are usually disposed of by the 
email server on the receiver’s side. We utilize this mechanism of generating double-bounce emails to collect 
malicious spam emails automatically.  

3.2. Autonomous Labeling System  
To use double-bounce emails as training data under the supervised learning, we would need their class labels. 
Needless to say, spammers try to conceal their malicious intention; therefore, it is not easy to determine the 
maliciousness from the collected double-bounce emails. The only way to identify the maliciousness is by click- 
ing the URLs. Evidently, this is very dangerous for general users; therefore, we use a crawling-type web mali- 
ciousness analyzer called SPIKE, which was developed by the National Institute of Information and Communi- 
cations Technology (NICT) in Japan. 

Figure 2 illustrates how the maliciousness of URLs in a spam email is analyzed in SPIKE [21]. The URL 
links in the email are first extracted from a double-bounce email and SPIKE downloads the html file and 
attached materials (e.g., java scripts, pdf, doc files) in the entrance page. It then continues to find other URLs in 
the downloaded pages again. This process is conducted recursively by crawling the linked websites, and all the 
downloaded materials are analyzed. Emails that are only link to a normal webpage with non-malicious contents 
are considered as non-malicious spam emails (i.e., all contents of Webpage 1 - 6 in Figure 2 are normal), 
whereas the emails with at least one suspicious content (i.e., one of Webpage 1 - 6 in Figure 2 is malicious) are 
identified as malicious spam emails.  

3.3. Text Processing and Feature Transformation   
In order for the classifier to carry out the classification task effectively, the classifier requires instances as the 
input instead of the raw spam emails for the learning purpose. The instances consist of informative features with 
a fixed-length which are extracted from the emails. Thus, appropriate pre-processing steps are required so that 
the arbitrary data of text messages are transformed into features with numerical features. Figure 1(b) demons- 
trates the pre-processing module of the spam email detection system. Feature extraction of spam emails involves 
tokenizing and lemmatizing the documents into bag-of-words (BoW). Tokenization breaks the sentences in the 
emails into pieces of words and removes frequent words called  stop words such as “the”, “which”, “are”, etc. 
Besides filtering out stop words, lemmatization also reduces the number of words in BoW by transforming 
redundant words that end with “ing”, “ed” and “s” into their root word (e.g., “learned” to “learn”). 

The BoW features usually consist thousands or millions of feature vectors. In general, only some features are 
informative and are able to differentiate different classes. Therefore, feature selection is carried out to select the 
most informative features in order to reduce the number of dimensions and avoid the computational complexity. 
Firstly, the initial training data are transformed into feature vectors with term frequency-inverse document fre- 

 

 
Figure 2. Example of web crawler and content analysis using SPIKE.     
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quency (TF-IDF) feature representation. Next, linear 1  Support Vector Machines (SVM) is used as a feature 
selection strategy that requires two steps; training using linear SVM [22] and eliminating features with low 
weights [23]. SVM is able to find a decision boundary by optimizing the following objective function:  

( )( )

2

, =1

T

1min
2

s.t. 1 ,    1, ,

0,    1, , .

m

ib i

i i i

i

C

y b i m

i m

ξ

φ ξ

ξ

+

+ ≤ − =

≤ =

∑





w
w

w x                           (10) 

which maximizes the margin 2w  of hyperplane ( )T
i bφ +w x  between two classes 1iy ∈±  and contains  

only a minimum training error iξ  (i.e., training data located above the support vectors which belong to the 
class of the training data). The parameter C  controls the trade off between margin maximization and errors of 
the SVM on training data, where a larger C  corresponds to a higher penalty to errors. The weights w  
obtained is used to select fN  number of features by choosing the highest fN -rank weights. 

To represent the selected features of initial training data and the remaining training data, the normalized 
TF-IDF [24] is used to measure the importance of a word to a document (i.e., document refers to the spam email) 
in the collection of documents given by the following equation:  

( ) ( )
( ) { }

TF-IDF , , log
1 :

d

dt

Df t
t d D

f t d D t d

 
= ×   + ∈ ∈ ∑

                     (11) 

where ( )df t , ( )dt f t∑ , D  and { }:d D t d∈ ∈  are the frequency of term t  in a document d , the total  

frequencies of all terms in document d , the total number of document in corpus and number of documents 
which have term t , respectively. The normalized term frequency (TF) is used to provide a balanced value to all 
documents that have a different number of words. If term t  appears frequently in a document id  and seldom 
occurs in other documents in D , the value of TF-IDF would be high where both TF and inverse document 
frequency (IDF) obtain high values. This indicates that term t  is important to document id . Otherwise, if 
either the occurrence of term t  is low in document id  or term t  is always appears in other documents in D , 
this would indicate that term t  is not important to document id  where the value of TF-IDF is low or “0”. 

After going through the entire procedure above, these data are used as the input to the classifier model. The 
details of the classifier model are discussed in the previous Section 2.2. 

3.4. Outlier Detection 
Although SPIKE can judge the maliciousness of spam emails, the analysis takes time, from a few minutes to 
even longer than ten minutes. Therefore, it is difficult to check all the collected double-bounce emails by SPIKE 
in real time. We introduce the outlier detection mechanism into RAN-LSH in order to reduce the number of 
spam emails to be checked by SPIKE. That is, only a new type of unknown spam emails (i.e., outlier) should be 
selected and sent to SPIKE for labeling. For this purpose, we propose a spam email detection system by 
combining RAN-LSH classifier [15] and SPIKE, so that the learning time is accelerated compared to when 
using SPIKE alone. In this study, we detect an outlier based on the output margin mθ , outlier threshold oθ  and 
the occurrence frequency threshold Nθ . The data with low output margins are considered as unknown emails 
for the current classifier and thus should be categorized as outlier. In addition, the number of similar data in each 
entry eN  is also important to decide whether the data is outlier or not. We assume that the data that do not 
frequently occurred (i.e., data allocated to an entry with small eN ) can also be categorized as outlier although 
the output margins are slightly higher than mθ . The outlier flag O

eF  is calculated using Equation (6). The 
algorithm of the outlier detection is summarized in Algorithm 4. 

4. Performance Evaluation 
4.1. Experimental Setup  
The detection performance is evaluated under incremental learning settings to study the following effects: 1) the 
effect of threshold parameters and 2) the effectiveness of daily updates. 
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In the former experiment, we investigate the effects of the following three threshold parameters to the perfor- 
mance: threshold of accumulation ratio aθ , that of output margin mθ , and that of tolerant distance pθ . In the 
latter experiment, we study the effect of incremental learning through comparison with the batch learning 
scheme. Figure 3 illustrates how labeled spam emails are trained in (a) batch learning scheme and (b) incremen- 
tal learning scheme. In the batch learning scheme, we adopt the conventional RBF network (RBFN) (i.e., RBFN 
usually used as batch learning [25]) as a classifier and a sliding window is introduced to define a data set to be 
trained every day. In this experiment, the time-window size is preliminarily determined as 12 days via the cross- 
validation using the spam emails collected during a different period. Therefore, as seen in Figure 3(a), the first 
learning stage is carried out on Day 12 using a set of spam emails collected from Day 1 to Day 12, and the data 
set from Day 13 is used to test the performance. Then, the time-window is shifted by one day at the second 
learning stage; that is, a set of spam emails collected from Day 2 to Day 13 is used for training, and the data set 
from Day 14 is used to test. Note that RBFN is retrained with a set of 12-day spam emails at every learning 
stage in a batch mode. On the other hand, in the incremental learning scheme, batch learning is first applied to 
an initial data set, which is composed of spam emails collected in the first 12 days. After that, this initial 
detection model is updated daily using one day training data and the system is tested using the next day data. A 
set of spam emails collected is forwarded to SPIKE to get the labels on maliciousness, and the pairs of a spam 
email and its class label are used as a training set on the next day. The number of collected spam emails is 
different every day. Their maximum, minimum, and average numbers are 756, 26, and 207, respectively. 

In this detection system, three parameters are determined empirically. The parameters are accumulation ratio 
aθ , output margin mθ  and tolerant distance pθ . In the following experiment, the parameters are set to: 

0.9aθ = , 0.2mθ = , and 2pθ = . Meanwhile, the error threshold ε  is set to 0.5. The other parameters, RBF 
width σ , the number of partitions P , errors penalty of SVM C , outlier threshold oθ , occurrence frequency 
threshold Nθ  and time-window size are determined in the initial learning phase through the cross-validation. 
There are 20,448 double bounce emails with 8334 malicious spam emails and 12,114 non-malicious spam 
emails used in this study that were collected from 1st March 2013 to 10th May 2013. 

It is important for the proposed system to correctly classify not only positive examples (malicious spam 
emails) but also negative ones (non-malicious spam emails). Therefore, in this study, three evaluations are used 
which are: recall rate, precision rate and F1 measure rate. The actual class labels are the class labels given by 
SPIKE, whilst the prediction labels are obtained by the detection system. The recall rate and the precision rate 
measure the ability of the detection system to classify the malicious spam emails (positive samples) correctly 
which takes into account different types of error. On the other hand, the F1 measure is the harmonic mean of 
recall and precision rate. The recall rate considers type II error (i.e., a malicious spam email is wrongly classi- 
fied as non-malicious spam email), whereas the precision rate considers type I error (i.e., a non-malicious spam 
email is wrongly classified as malicious spam email). If the malicious spam email detection system obtained a 
low recall rate, the users are exposed to the danger of malware infection because some users may click an URL 
that leads to malicious websites. Such a misclassification must be avoided in any cases. In the second situation, 
there is low risk of the malware attack. The system only gives strict conditions where most of the non-malicious 
spam emails are categorized as malicious spam emails. Therefore, to design a good malicious spam email detec- 
tion system, it is crucial to have at least high percentage of recall rate to reduce the risk of malware attack.  
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(a) 

 
(b) 

Figure 3. Comparison of learning scheme between batch learning and incremental learning. (a) Batch learning; 
(b) Incremental learning.                                                                       

 
However, if the malicious spam email detection system is able to obtain high rate of both recall and precision, 
we can say that the developed system is nearly a perfect detection system.  

4.2. Effects of Threshold Parameters 
First, let us examine the threshold parameters and their effect to the detection system. Here, we study the 
influence of aθ , mθ  and pθ  so that the parameters are optimized to ensure fast learning property of the 
detection system while having low misclassification rate. The first parameter is the threshold of accumulation 
ratio aθ . If aθ  is set to a large value, an eigenspace to define hash functions has high-dimensions. Thus, the 
length of a hash code becomes long, resulting in the enlargement of a hash table. Therefore the searching of 
similar data would require a longer time since there are many hash values registered in hash table. The next 
parameter is the output margin threshold mθ . This parameter controls the amount of selected data to be learned 
by RAN-LSH. As the value of mθ  is set to a higher value, the representation of the “not well-learned” region 
would become wider and the number of selected data is increased in the incremental learning phase, resulting in 
slower learning. The third important parameter is the tolerant distance pθ  which determines the distance of 
near RBF bases. By updating the weights of only near RBF bases (i.e., using small value of pθ ), the time 
needed to solve the linear equation using Singular Value Decomposition (SVD) is shorten, thus the learning time 
would be accelerated. 

To determine an appropriate value of each parameter, the cross-validation is performed for the initial training 
set, and the obtained parameter values are fixed over the incremental phase. Table 1(a) and Table 1(b) show the 
F1 measure and the learning time, respectively, using several combination values of the accumulation ratio aθ  
and output margin mθ . As seen in Table 1(a), the highest F1 measure is obtained when 0.9aθ =  and 

0.2mθ = . For output margin 0.2mθ ≤ , F1 measure does not differ much from the F1 measure with output 
margin 0.2mθ = . This result is not surprising because high value of output margins represents that the data are 
“well-learned” or correctly classified. By adding these data, it is expected that the classification rate would not 
improve although the number of selected data and RBF bases created are increased. As a result for learning 
using more training data shown by a higher mθ , the learning time would also increase. We assume that the data 
which are located on the border of different classes should have network outputs in the range of “0.4” to “0.6”.  
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Table 1. The evaluation using several values of accumulation ratio aθ  and output margin threshold mθ  for the spam email 
detection system. The performance measures are: (a) the F1 measure [%], and (b) initial learning time [sec.].               

(a) 

aθ  
mθ  

0.05 0.1 0.2 0.3 0.4 

0.5 82.8 87.0 88.4 88.2 88.1 

0.7 86.6 87.3 90.5 87.8 88.2 

0.9 87.0 87.7 90.8 88.0 87.9 

(b) 

aθ  
mθ  

0.05 0.1 0.2 0.3 0.4 

0.5 126.5 128.6 130.1 130.3 131.2 

0.7 128.0 129.7 130.3 130.9 132.6 

0.9 128.6 129.8 132.1 132.7 139.8 

 
Therefore, the output margins mθ  can be estimated to be between “0” to “0.2” where the data with output 
margins in these range are important to be learned to reduce the misclassification rate. 

On the other hand, Table 2 demonstrates the suitable value of the tolerant distance pθ  using appropriate 
value of aθ  and mθ  obtained previously which are “0.9” and “0.2”, respectively. Tolerant distance pθ  also 
give influence to the classification rate and the speed of the detection system by controlling the distance which 
defines the area of near RBF bases. As we can see, the suitable value for the tolerant distance is 2. It means that 
only the RBF centers that differ from the given training data at two projection vector iv  are used to update the 
weight. If the pθ  is too small, it indicates that the area of selected RBF bases is not enough to approximate the 
weights correctly. Whereas for pθ  that is too large, it would be similar to the approach of updating weights 
using all RBF bases. Thus, the size of RBF outputs Φ  in =ΦW D  would be bigger and therefore, the 
decomposition steps using SVD would require a longer time. Even though the results show the evaluation 
performance during initial learning, we expect a similar result from the incremental learning phase. It is because 
parameter aθ , mθ  and pθ  are also required during the incremental learning phase. For the next experiment, 
we set the value of aθ , mθ  and pθ  to be “0.2”, “0.9” and “2”, respectively. 

4.3. Effectiveness of Incremental Learning  
All learning parts in the detection system including pre-processing and classifier module are very crucial which 
give effect to the performance result. In this experiment, we compare the performance of the proposed online 
detection system with different learning scheme and classifier model to see the competency of the proposed 
method. Figure 4 and Figure 5 show the recall rate and precision rate for the detection system with the follow- 
ing three combinations of classifiers and learning schemes: RBFN (batch learning), RAN (incremental learning), 
and RAN-LSH (incremental learning) (see Figure 3). The batch learning is carried out using 12-days of training 
data and it is retrained incrementally. While for the incremental learning, the classifier is updated incrementally 
using 1-day of training data. As seen in Figure 4 and Figure 5, the proposed one-pass learning of the detection 
system is capable to learn and carry out the classification task effectively since our proposed system obtained 
almost the same classification rate as the memory-based learning approach (i.e., batch learning). In fact, our 
proposed method does not need large memory size to store the training data compared to the memory-based 
learning. In this study, 12-days length of window size is used for the batch learning to learn incrementally, 
whereas for incremental learning, only 1-day data set is used as training data. Besides that, we also compare the 
performance of conventional classifier RAN using the same incremental learning scheme. Our previous study in 
[15] shows that RAN-LSH can learn fast. As seen in Figure 4 and Figure 5, our detection system obtains a 
comparable result against the conventional classifier model. 
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Figure 4. Transitions of recall rates in the malicious spam email detection system with three 
learning schemes.                                                                

 

 
Figure 5. Transitions of precision in the malicious spam email detection system with three 
learning schemes.                                                                

 
Table 2. The performance using different values of tolerant distance pθ .                                           

Evaluation 
pθ  

0 1 2 5 

F1 measure [%] 88.5 88.8 89.3 89.3 

Initial learning time [sec.] 138.2 139.1 140.1 144.9 

4.4. Overall Performance of Malicious Spam Email Detection System   
The overall performance is evaluated by averaging over the whole incremental learning phase. The recall rate, 
precision rate and F1-measure for the three learning models are summarized in Table 3. From Table 3, we can 
see that the proposed detection system can learn 482 times faster than the conventional RBFN model, and can 
learn 46 times faster than RAN. This is because our detection system can find a set of similar data in a given 
training set very quickly using LSH; thus, only a data set falling in an untrained region are selected to learn and 
the others are discarded. In addition, only near RBF centers are used to update the connection weights. The 
recall rate and F1 measure of RBFN are higher than those of the other incremental models because this model 
keeps a large number of data for training; where this requires high computational costs and large memory. Since  
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Table 3. Overall performance of malicious spam email detection system.                                           

Performance evaluation RBFN batch RAN incremental RAN-LSH incremental 

Recall Rate [%] 94.6 89.4 90.7 

Precision Rate [%] 90.7 90.8 87.2 

F1 Measure [%] 92.2 89.3 87.7 

Learning Time [sec.] 4532.7 432.0 9.4 

 
the classification rate of recall rate, precision rate and F1 measure do not differ much from the other model, we 
can conclude that the proposed system is able to update efficiently and able to give class label of the incoming 
emails within a short time. 

5. Conclusions  
We have proposed a malicious spam email detection system using BoW features, where the classifier adopts 
LSH to select essential data and near RBF bases. We use two types of essential data: 1) the data located close to 
a class boundary; and 2) the data located outside of the learned region (i.e., outlier). The proposed scheme 
provides desirable learning characteristics as an autonomous malicious spam email detection system and able to 
adapt to new trends of malicious emails quickly. In addition, our detection system is quite fast compared with 
SPIKE which often needs a long time to complete the maliciousness analysis. By using the proposed system, it 
is possible to give proper alerts to users quickly based on up to date information. Since the learning is quite fast 
and the detection performance is comparable to the conventional models, we can conclude that the proposed 
system is suitable to be implemented in an email client software on the user side. 

Currently, the proposed detection system has no pruning function for RBF bases. Therefore, as the learning is 
continued for a long time, the number of RBF could be increased excessively, and this causes longer learning 
time. Then, in the worst scenario, the learning may not converge before new training data are given. To avoid 
such a disastrous situation, a proper number of RBF bases should always be maintained by introducing an online 
pruning mechanism into RAN-LSH. Besides that, our detection system uses selected features from initial 
learning training data. As our future work, we intend to construct an adaptive hash table to adapt to the changes 
of feature vectors from the recent BoW without forgetting the previous knowledge. It is expected that the 
detection system would be more stable and robust to the new malicious spam email attacks.  
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