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Abstract. Optoacoustic (OA) imaging of biological tissues is a modern 
technique allowing for three-dimensional blood oxygen saturation mapping 
based on OA spectroscopy data. Since biological tissues are optically 
inhomogeneous and the spatial distribution of optical parameters within a 
biological tissue is a priori unknown, Monte Carlo simulation technique is 
traditionally used to estimate the distribution of probing illumination within 
tissues in quantitative OA reconstruction. Currently, machine learning 
techniques are actively employed for reconstructing 3D distribution of blood 
oxygen saturation or estimating optical properties of biological tissues based 
on training datasets. In this paper, systemic calculations of synthetic OA 
images of a medium with embedded vessel-like structures were performed to 
create a training dataset for machine learning employing combined 
application of the Monte Carlo technique for direct solution of optical problem 
and difference-space pseudo-spectral approach implemented through k-Wave 
Toolbox calculations for the acoustical part. The calculations were performed 
for probing wavelengths of 532 nm, 658 nm and 1064 nm, which are 
commonly employed in spectral OA imaging. Simulated OA data for different 
orientation, diameter and embedding depth of blood vessels allows analyzing 
the effect of these parameters on the formation of OA image and the 
reconstruction of blood oxygen saturation. The ratio of OA signals 
corresponding to probing wavelengths of 658 nm and 1064 nm was employed 
for simple reconstruction of blood oxygen saturation in silico for different 
vessel geometries with the precision of < 3–15% for the most of blood vessels 
diameters and embedding depths and the range of blood oxygen saturation 
values ≥ 0.8. The obtained set of synthetic OA data has high potential as a 
training set for employment in machine learning techniques aiming at 
mapping blood oxygenation based on spectral OA data. 
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1 Introduction 

Blood oxygen saturation (blood oxygenation level, 

StO2) is an important physiological indicator actively 

used in monitoring of functional parameters in 

biomedical studies, such as the evaluation of chemo- 

and radiation therapy impact on tumor tissue [1, 2], 

monitoring of wounds healing [3], or estimation of 

mailto:valeriyaperekatova@gmail.com
https://dx.doi.org/10.18287/JBPE22.08.040511


V. Perekatova et al.: Combined Monte Carlo and k-Wave Simulations for... doi: 10.18287/JBPE22.08.040511 

J of Biomedical Photonics & Eng 8(4)   24 Dec 2022 © J-BPE 040511-2 

tissue reaction to photodynamic therapy [4]. In this 

regard, the development of a non-invasive visualization 

technique capable of providing fast in vivo three-

dimensional mapping of blood oxygenation level is of 

high importance. Optical imaging techniques [5, 6] 

benefit from both non-invasiveness and high sensitivity 

to blood oxygenation owing to significant difference in 

absorption spectra of oxy- and deoxyhemoglobin in 

optical spectral range. Traditionally, blood oxygenation 

level is estimated with diffuse optical spectroscopy 

(DOS) [2, 7, 8] based on the registration of the spectra 

of the probing radiation passed through the biological 

tissue and the subsequent reconstruction of the medium 

absorption spectra from the measurement data [9, 10]. 

This approach, however, provides with the estimation 

of blood oxygenation value averaged over a particular 

measurement volume within biological tissue. Blood 

saturation mapping provides a more detailed 

information regarding tissue oxygenation and could be 

performed using diffuse optical tomography 

(DOT) [11, 12], however, at the expense of spatial 

resolution of order of 0.5 cm. Nevertheless, the 

estimation of local oxygenation at tissue layer level in 

certain blood vessels may be required, for example, for 

the studies of hemodynamics [13, 14]. Optoacoustic 

(OA) imaging [15–19] is a modern hybrid imaging 

technique with high potential in saturation 

mapping [20] owing to high spatial resolution combined 

with increased probing depth compared to purely 

optical modalities.  

This technique is often employed for superficial 

vasculature mapping providing resolution down to tens of 

microns and imaging depth of several centimeters, which 

allows obtaining in vivo morphological and functional 

information on the vascular bed of biological tissue. The 

contrast of OA images is determined by the difference in 

the absorption coefficient of blood and surrounding 

components of the biological tissue revealing high 

potential for in vivo angiography. Since the optical 

absorption spectra of oxy- and deoxyhemoglobin differ 

significantly, spectral separation of these chromophores 

can be performed based on OA spectroscopy data with 

consequent determination of blood oxygen 

saturation [20, 21].  

However, the local pressure increment that occurs in 

the medium due to absorption of pulsed laser radiation by 

optical inhomogeneities is proportional to the local optical 

absorption coefficient and the fluence of the probing 

optical radiation at a given point in the medium. Since 

biological tissues are optically inhomogeneous and the 

distribution of optical parameters of a biological tissue is a 

priori unknown, Monte Carlo simulation technique is 

traditionally used to estimate the distribution of probing 

illumination within tissues in quantitative OA 

imaging [22]. Reconstruction of 3D distribution of 

functional tissue parameters from OA data benefits from 

current development of machine learning (ML) 

techniques. Currently, ML methods (for example, artificial 

neural networks) are actively employed for reconstructing 

maps of blood oxygen saturation distribution or estimating 

optical properties of biological tissues based on training 

OA datasets [23–25]. Some of approaches using neural 

networks estimate oxygenation from single-pixel pressure 

spectra [26, 27]. Employment of convolutional neural 

networks allows to process the spectra of entire 2D (3D) 

images utilizing spatial and spectral information at the 

same time [28–31]. Due to the lack of experimental 

training data with a priori known saturation distribution 

within tissue, synthetic data are commonly used for 

training the neural network and proof-of-concept 

verification [23, 24]. In order to accumulate synthetic 

datasets for training algorithms, it is essential to 

realistically model the physical processes of optoacoustic 

imaging.  

In this paper, to create a training sample dataset, 

systemic calculations of OA images were performed 

employing sequential application of the Monte Carlo 

method for direct solution of optical problem and k-space 

pseudo-spectral approach for acoustics. A simple approach 

to blood oxygen saturation reconstruction based on the 

revealed monotonous dependence of registered OA signal 

ratio for probing wavelengths of 658 nm and 1064 nm was 

proposed and tested at the synthetic data. Obtained results 

indicated high potential of the developed approach to OA 

images simulations for further development of ML-based 

algorithms of the estimation of blood oxygen saturation. 

2 Materials and Methods 

2.1 Monte Carlo Modeling  

Traditional Monte Carlo (MC) technique for light 

transport studies is based on modeling of a large number 

of random photon trajectories in turbid media with 

following statistical analysis of the collected data [32]. In 

this work previously developed platform for three-

dimensional MC modeling of light propagation in 

biological tissues [22, 33, 34] was customized by 

implementing elongated absorbers mimicking different 

vessels filled with blood within biotissue. It was 

employed for the generation of the maps of the absorbed 

light dose distribution at probing wavelength λex 

𝐻(𝑥, 𝑦, 𝑧, λ𝑒𝑥) in a flat tissue-like homogenous medium 

containing cylinders mimicking blood vessels of 

different diameters, embedding depths and orientations 

corresponding to typical morphological parameters.  

The full size of a tissue sample considered in 

simulations was 20 × 20 × 10 mm3. The light source was 

considered to be a plane wave illuminating the sample 

from the top. A total of 107 photons were launched into 

the medium perpendicular to the tissue surface and used 

to calculate 𝐻(𝑥, 𝑦, 𝑧, λ𝑒𝑥)  for each of three probing 

wavelengths: λex = 532, 658, and 1064 nm. The 

wavelengths of 532 nm and 1064 nm are the wavelengths 

commonly employed for OA imaging [35], while the pair 

of 658 nm and 1064 nm is optimal for more precise 

estimation of blood oxygen saturation [36]. The 

refractive index was set equal to 1.38 for blood vessels as 

wel l  as for  background t issue .  
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Table 1 Ranges of the optical properties used in Monte Carlo simulations. 

Wavelength, nm 
Human skin in vivo Blood (StO2 varies from 0.1 to 1) 

µa, mm–1 µs, mm–1 g µa, mm–1 µs, mm–1 g 

532 0.39 13.29 0.67 19.04–22.48 92.07–98.65 0.989–0.988 

658 0.06 9.96 0.67 1.51–0.15 82.94–92.74 0.986–0.985 

1064 0.04 5.9 0.67 0.23–0.45 42.19–47.75 0.973–0.972 

Table 2 Parameters of the simulated medium and ultrasonic detector for acoustic simulations. 

Biotissue Detector 

Acoustic 

attenuation, 

mm-1MHz-1 

Time scale, 

ns 

Grid 

element 

size, mm 

Volume size, 

mm3 

Numerical 

aperture 

Maximum 

supported 

frequency, 

MHz 

Radius, mm 

0.01 10 0.05 17.8 × 7.8 × 12.05 0.71 15 6 

 

Fig. 1 Three examples of side views  of blood vessels configuration: a) 0.1 mm ≤ z0 ≤ 0.7 mm and 0.1 mm ≤ d ≤ 0.25 mm, b) 

0.9 mm ≤ z0 ≤ 1.5 mm and 0.3 mm ≤ d ≤ 0.45 mm, c) 0.5 mm ≤ z0 ≤ 1.1 mm and 0.75 mm ≤ d ≤ 0.9 mm. 

Blood oxygen saturation in blood vessels was varied 

from 0.1 to 1 with the step of 0.1, resulted in different 

values of the blood optical properties calculated based on 

absorption and scattering spectra for oxygenated and 

deoxygenated whole blood taken from [37]. Optical 

properties for the background tissue were taken from 

paper [38] for human skin in vivo. All the values of 

optical properties at corresponding wavelengths are 

shown in Table 1. 

2.2 k-Wave Modeling of OA Images 

Modeling of OA images of biotissue based on 

MC-calculated absorption map 𝐻(𝑥, 𝑦, 𝑧, λ𝑒𝑥)   was 

performed using the k-Wave Toolbox [39], which is a 

standard for acoustic calculations. The toolbox 

implements a k-spatial pseudo-spectral method for 

solving first-order acoustic equations for homogeneous 

and inhomogeneous media. The employed toolbox can 

take into account arbitrary distribution of 

inhomogeneities and acoustic absorption. Monte Carlo 

simulated maps of the absorbed light dose 𝐻(𝑥, 𝑦, 𝑧, λ𝑒𝑥) 

were employed as distributed sources of ultrasonic waves 

with initial pressure distribution 

𝑝0(𝑥, 𝑦, 𝑧, λ𝑒𝑥) = 𝐺 ∙ 𝐻(𝑥, 𝑦, 𝑧, λ𝑒𝑥), (1) 

where 𝐺 is the Grüneisen parameter.  

The k-Wave modeling of OA microscopy images was 

implemented in three-dimensional geometry by the 

solution of the forward acoustic problem for each detector 

position in XZ-plane. The ultrasonic detector was 

supposed to be a spherically focused antenna with the 

parameters close to those for real detector employed in an 

OA microscope [40–42]. The acoustic properties, grid size 

and parameters of the biotissue and the ultrasonic detector 

are shown in Table 2. After k-Wave modeling, each OA 

microscopy B-scan was processed with the reconstruction 

algorithm described in paper [43]. 

Both MC modeling and k-Wave simulations were 

performed with the employment of workstation equipped 

with 64-core CPU AMD Ryzen Threadripper 3990X with 

frequency of 2.9 GHz with 256 Gb RAM onboard. 

2.3 Building Synthetic Dataset for Saturation 

Reconstruction 

Numerical simulations were performed for two different 

geometry configurations of blood vessels distribution. 

The first one was a simplified model of skin (Fig. 1), 

containing four blood vessels with parallel axes with 

different diameters d and embedding depths z0. 
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Fig. 2 Complex configuration of vessel net for MC 

modeling with randomly distributed blood vessels: 

(a) enface schematic (top view, XY-plane) of vessels 

orientation (color encodes number of pixels belonging to 

vessels in corresponding projection); (b) 2D projection (side 

view, XZ-plane) of blood vessels corresponding to the 

projection marked with dashed line in Fig. (a). 

Fig. 1 shows side views of three examples of such skin 

models:  0 .1  mm ≤ z0  ≤  0 .7  mm and  

0.1 mm ≤ d ≤ 0.25 mm (Config 1), 0.9 mm ≤ z0 ≤ 1.5 mm 

and 0.3  mm ≤ d  ≤  0 .45  mm (Config 2) , 

0.5 mm ≤ z0 ≤ 1.1 mm and 0.75 mm ≤ d ≤ 0.9 mm 

(Config 3). The total number of combinations of 

parameters considered in simulations amounted 200, 

which covered ten different embedding depths z0 from 0.1 

to 1.9 mm and twenty different diameters d from 0.05 to 

1 mm. One configuration contained 4 vessels with 

different parameters resulting in 50 different 

configurations. Employment of this geometry aims at 

creating a training dataset that cover the entire range of 

possible morphological parameters of superficial blood 

vessels. For all the combinations, ten different values of 

blood oxygen saturation varying from 0.1 to 1 were 

considered. Thus, the total number of calculated maps of 

𝐻(𝑥, 𝑦, 𝑧)  for different 50 geometries, 3 probing 

wavelengths and 10 oxygenation values amounted 1500. 

Fig. 3 shows the schematic of spherically focused 

ultrasound detector and initial pressure distribution 

obtained by MC modeling in projection to XZ-plane for 

vessel orientation configurations from Fig. 1c and Fig. 2b.  

Based on simulated optoacoustic images, a training 

dataset was created for the implementation of 

reconstruction methods aiming at the estimation of local 

blood oxygenation level with a voxel-by-voxel resolution. 

2.4 Estimation of Blood Oxygen Saturation 

For considered probing wavelengths, the ratios of OA 

signals 𝑝(𝑥, 𝑦, 𝑧, λ𝑒𝑥) in central cross-sections (y = 0) at 

different wavelengths (
𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=532 𝑛𝑚)

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=658 𝑛𝑚)
, 

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=532 𝑛𝑚)

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=1064 𝑛𝑚)
, 

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=658 𝑛𝑚)

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=1064 𝑛𝑚)
) were 

calculated for simple geometries and all considered blood 

oxygen saturation values. The trends of the OA signal 

ratios vs blood oxygen saturation were monotonous, and 

the ratio  

 𝑅(𝑥, 𝑦, 𝑧) =
𝑝(𝑥,𝑦,𝑧,𝜆𝑒𝑥=658 𝑛𝑚)

𝑝(𝑥,𝑦,𝑧,𝜆𝑒𝑥=1064 𝑛𝑚)
, (2) 

revealed the smallest variation within all cases (vessel 

depth and location) for particular values of StO2. In this 

connection, the average value 

𝑅̃ =
〈𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=658 𝑛𝑚)〉|(𝑥,𝑦=0,𝑧)∈𝑣𝑒𝑠

〈𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=1064 𝑛𝑚)〉|(𝑥,𝑦=0,𝑧)∈𝑣𝑒𝑠
 ,   (3) 

where 〈𝑝(𝑥, 𝑦 = 0, 𝑧, λ𝑒𝑥)〉|(𝑥,𝑦=0,𝑧)∈𝑣𝑒𝑠  means the OA 

signal in central cross-section of blood vessel 

corresponding to probing wavelength λex averaged over 

all available cases, was employed to construct the mean 

dependence 𝑅̃(StO2). The inverse function StO2̃(𝑅̃) was 

further employed for voxel-by-voxel estimation of blood 

oxygen saturation based on the calculated ratio 

𝑅(𝑥, 𝑦 = 0, 𝑧): 

StO2(𝑥, 𝑦 = 0, 𝑧) = StO2̃(𝑅(𝑥, 𝑦 = 0, 𝑧)). (4) 

 

Fig. 3 Schematic of three-dimensional detector and initial pressure distribution obtained from MC modeling in projection to 

XZ-plane for vessel configuration from: a) Fig. 1c; b) Fig. 2b. 
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Fig. 4 Three-dimensional maps (side view, XZ-plane) of the distribution of absorbed light dose in XZ-plane 𝐻(𝑥, 𝑦 = 0, 𝑧, λ𝑒𝑥) 

for probing wavelengths of λ𝑒𝑥  = 532 nm (a, d, g, j), λ𝑒𝑥   = 658 nm (b, e, h, k), and λ𝑒𝑥  = 1064 nm (c, f, i, l) and for 

configurations shown in Fig. 1 (Config1 – a, b, c; Config2 – d, e, f; Config3 – g, h, i) and 2D projection of complex geometry 

(CG) from Fig. 2b (j, k, l). Notations v1–v4 indicate vessels chosen for further detailed analysis. 

 

Fig. 5 Reconstructed OA B-scans 𝑝(𝑥, 𝑦 = 0, 𝑧, λ𝑒𝑥)  obtained from k-Wave modeling for probing wavelengths of 

λ𝑒𝑥 = 532 nm (a, d, g, j), λ𝑒𝑥 = 658 nm (b, e, h, k), and λ𝑒𝑥 = 1064 nm (c, f, i, l) and for configurations shown in Fig. 1 

(Config1 – a, b, c; Config2 – d, e, f; Config3 – g, h, i) and 2D projection of complex geometry (CG) from Fig. 2b (j, k, l).  

3 Results and Discussion 

3.1 Monte Carlo Modeling  

Fig. 4 shows central cross-sections of three-dimensional 

maps of absorbed light dose 𝐻(𝑥, 𝑦 = 0, 𝑧, λ𝑒𝑥) in blood 

vessels for their various diameters and embedding depths 

for probing wavelengths of 532 nm (Fig 4a), 658 nm 

(Fig. 4b) and 1064 nm (Fig. 4b) and three different 

configurations from Fig. 1 and 2D projection of complex 

geometry (Fig. 2b). 

Absorption coefficient of blood for 532 nm is 

significantly higher than those for 658 nm or 1064 nm, 

which significantly limits the penetration of radiation of 

this wavelength into blood vessels, which is manifested by 

primary absorption of light on the boundaries of blood 

vessels (Fig. 4a), while for 658 nm and 1064 nm probing 

light is absorbed in the entire volume of vessels 

(Figs. 4b, c). 

3.2 k-Wave Modeling of OA Images 

At the second stage, based on the obtained absorption 

maps (Fig. 4), the acoustic response of the medium was 

calculated using the k-Wave Toolbox [39] and 

reconstructed by the earlier proposed algorithm [43] for 

all probing wavelengths. The results corresponding to 

configurations from Fig. 1 and Fig. 2b are shown in 

Fig. 5. 

Due to limitations of RAM capacity of the employed 

workstation (although it is highest available for non-server 

solutions) the grid element size was chosen equal to 50 

µm, which exceeds the scanning step in a real OA imaging 

system [42]; in addition, the central frequency of 

ultrasound detector is lower for numerical modelling as 

compared to the real system, which leads to the presence 

of artifacts in the reconstructed OA images.  
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Fig. 6 Dependencies of average OA signals vs depth 

obtained in vivo [41] (Experimental data) and from 

k-Wave modeling (Simulated data). 

Moreover, real OA systems operate with complicated 

illumination geometry (circular or through the center of 

the ultrasound detector [42, 44]), while this study is 

limited by a plane wave illumination case. These 

limitations lead to the presence of pronounced artifacts 

around the vessels location areas. In order to analyze the 

adequacy of the employed simulation approach we have 

compared the averaged A-scan (OA signal vs Z 

coordinate) for the experimental OA image of a human 

palm in vivo data [41] with the same dependence for a 

simulated image (Fig. 6). This comparison reveals good 

agreement of OA signal attenuation, and the only 

discrepancy is observed in the top tissue layer, where 

simulated signal exceeds the experimental one. This 

discrepancy is explained by a simplified skin model 

employed in simulations, in which morphological skin 

layers are not distinguished, while in real skin upper 

stratum corneum and epidermis layers contain no blood 

thus producing weak OA signal. Nevertheless, good 

correspondence of the general trend allows concluding 

on the adequacy of the employed model given that proper 

normalization is done. 

3.3 Reconstruction of Blood Oxygen 

Saturation from Ratio of Signal Intensities 

Figs. 7a–c show the dependencies of OA signal 

intensities averaged over each of four blood vessels 

(denoted as v1–v4 in Fig. 4h) on blood oxygen saturation, 

which were obtained in numerical simulation. Figs. 7d–f 

shows the ratios of the signals registered at different 

probing wavelengths. It is worth mentioning that the 

signals show monotonous dependence on StO2 owing to 

monotonous dependence of the medium optical 

properties on this parameter. However, they show 

different trends owing to difference in absorption spectra 

of oxy- and deoxyhemoglobin. The revealed monotonous 

dependence of signal ratio in this respect is more 

important, since it demonstrates the feasibility of 

employing the ratiometric approach in saturation 

reconstruction.  
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Fig. 7 Dependencies of OA signal intensity on blood oxygen saturation for probing depths of a) 532 nm, b) 658 nm, and c) 1064 

nm and corresponding ratios: d) 
𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=532 𝑛𝑚)

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=658 𝑛𝑚)
, e) 

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=532 𝑛𝑚)

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=1064 𝑛𝑚)
, f) 

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=658 𝑛𝑚)

𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=1064 𝑛𝑚)
. 

Notations v1–v4 indicate vessels in Fig. 4h from left to right. 
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Fig. 8 (a) Mean dependence of OA signals ratio 𝑅̃ vs blood 

oxygen saturation StO2 calculated for all 50 simple 

geometry configurations; (b) inverse function StO2̃(𝑅̃) and 

its approximation with linear fit. 

The ratio of OA signals in central cross-section of 

blood vessels corresponding to probing wavelengths of 

658 nm and 1064 nm revealed the smallest variance within 

all three ratios (Fig. 6d–f), thus, it was employed for the 

generation of synthetic curve 

StO2̃ (𝑅̃ =
〈𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=658 𝑛𝑚)〉|(𝑥,𝑦=0,𝑧)∈𝑣𝑒𝑠

〈𝑝(𝑥,𝑦=0,𝑧,λ𝑒𝑥=1064 𝑛𝑚)〉|(𝑥,𝑦=0,𝑧)∈𝑣𝑒𝑠
).  Fig. 8a 

shows mean dependence of ratio 𝑅̃  vs blood oxygen 

saturation averaged over all fifty considered geometries of 

blood vessels, which could be considered as a generalized 

dependence that could be used in saturation map 

construction.  

Fig. 8a shows that the variance of the signal ratio 𝑅̃ 

decreases with the increase in blood oxygen saturation, 

hence, it is smaller for the blood oxygen saturation values 

> 0.8, which allows considering the obtained dependence 

to be used in a simple algorithm of blood oxygenation map 

reconstruction. The linear fit of inverse function StO2̃(𝑅̃) 

depicted in Fig. 8b was employed for voxel-by-voxel 

reconstruction of blood oxygen saturation map based on 

the map of OA signal ratios ( 𝑅 (𝑥, 𝑦 = 0, 𝑧) =
𝑝(𝑥,𝑦=0,𝑧,𝜆𝑒𝑥=658 𝑛𝑚)

𝑝(𝑥,𝑦=0,𝑧,𝜆𝑒𝑥=1064 𝑛𝑚)
) derived from simulations results. 

Fitting was performed within Matlab Curve Fitting 

Toolbox and revealed that dependence StO2̃(𝑅)  is 

described with the following Eq.:  

StO2̃(𝑅) = −0.59𝑅 + 1.37, (5) 

with high precision (coefficient of determination 

r2 = 0.9991). Reconstructed saturation value StO2,rec was 

calculated voxel-by-voxel from corresponding values of 

R. For the cases of reconstructing StO2,rec value outside 

the physiological range, below 0 or above 1, they were 

assumed to be equal to 0 or 1, respectively. 

 

Fig. 9 Blood vessel configurations with StO2,true(𝑥, 𝑦 = 0, 𝑧)  value (a, b, c), calculated ratio 𝑅(𝑥, 𝑦 = 0, 𝑧)  (d, e, f), 

reconstructed blood oxygen saturation StO2,rec(𝑥, 𝑦 = 0, 𝑧)  (g, h, i), reconstructed blood oxygen saturation 

StO2,rec(𝑥, 𝑦 = 0, 𝑧)  in vessels only (j, k, l) and the discrepancy of reconstructed blood oxygen saturation 

δStO2,rec(𝑥, 𝑦 = 0, 𝑧) (m, n, o) for initial blood oxygen saturation 0.8 (a, d, g, j, m), 0.9 (b, e, h, k, n), and 1 (c, f, i, l, o). Vessel 

configurations correspond to Fig. 1. 
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Fig. 10 Blood vessel configurations with StO2,true(𝑥, 𝑦 = 0, 𝑧)  value (a, b, c), calculated ratio 𝑅(𝑥, 𝑦 = 0, 𝑧)  (d, e, f), 

reconstructed blood oxygen saturation StO2,rec(𝑥, 𝑦 = 0, 𝑧)  (g, h, i), reconstructed blood oxygen saturation 

StO2,rec(𝑥, 𝑦 = 0, 𝑧)  in vessels only (j, k, l) and the discrepancy of reconstructed blood oxygen saturation 

δStO2,rec(𝑥, 𝑦 = 0, 𝑧) (m, n, o) for initial blood oxygen saturation 0.8 (a, d, g, j, m), 0.9 (b, e, h, k, n) and 1 (c, f, i, l, o). Vessel 

configurations correspond to Fig. 2b. 

The results of reconstruction for several simple 

geometry cases (shown in Fig. 1) are shown in Fig. 9, 

while the results for the complex geometry (Fig. 2b) are 

shown in Fig. 10. Each figure contains vessel location 

schematic, calculated XZ projections maps of OA signals 

ratio R (x, y = 0, z), projections of full reconstructed maps 

of StO2 and reconstructed StO2 values in vessels only, and 

the discrepancy between reconstructed (StO2,rec) and true 

(StO2,true) (blood oxygen saturation values, calculated as: 

δStO2,rec(x, y = 0, z) =  

= StO2,rec(x, y = 0, z) − StO2,true(x, y = 0, z). 
(6) 

For the calculation of δStO2,rec the true blood oxygen 

saturation value in surrounding tissue outside the vessels 

was assumed equal to that in vessels, since the distribution 

of the light field generating OA signal is governed by 

absorption in vessels, although the considered signals 

originate from the nearby voxels. 

As can be seen from Figs. 9–10, the proposed simple 

reconstruction algorithm provides with adequate 

estimation of blood oxygen saturation in vessels with no 

a priori knowledge of vessel embedding depth required. 

The discrepancy δStO2,rec between reconstructed and true 

blood oxygen saturation, StO2,rec and StO2,true, is the highest 

for thin and subcutaneous vessels (Figs. 9–10). The ratio R 

is higher for subcutaneous vessels (Fig. 9d–f, Fig. 10d–f), 

which leads to smaller values of StO2,rec and, thus, to larger 

discrepancy δStO2,rec. For thick vessels δStO2,rec value 

increases with the increase in their embedding depth due 

to attenuation of probing light and corresponding decrease 

in OA signal. This effect is demonstrated in details in 

Fig. 11, which shows the dependencies of mean error in 

vessels on their diameter d and embedding depth z0 

calculated for all vessels in all considered simple geometry 

OA images (Fig. 1) calculated as mean discrepancy over 

all voxels belonging to a certain vessel: 

δStO2,rec
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 〈δStO2,rec(𝑥, 𝑦, 𝑧)〉|

𝑣𝑒𝑠
. (7) 

From Fig. 11 one can see that described effects lead to 

the presence of the minimal δStO2,rec (precision < 3%) 

area, which corresponds to the combinations of parameters 

that provide the mean values of the calibration curve 

𝑅̃(StO2̃)  (Fig. 8a) employed for the reconstruction 

algorithm. For the combination of vessel diameter d and 

embedding depth z0 above that area the precision is <15% 

for StO2,true ≥ 0.8. The reconstruction algorithm employs 

mean values of R, which correspond to the intermediate 

values of vessel embedding depth thus providing better 

accuracy for these depths (Fig. 11). For blood vessels 

located below those depths, the ratio R is smaller due to 

stronger attenuation of probing light at 658 nm compared 

to 1064 nm. This leads to overestimation of StO2 and 

positive values of δStO2,rec (Fig. 11). 
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Fig. 11 Dependencies of discrepancy of blood oxygen saturation reconstruction δStO2,rec in vessels on their diameter d and 

embedding depth z0 for blood oxygen saturation value of (a) 0.6, (b) 0.7, (c) 0.8, and (d) 0.9 calculated for all considered vessels 

in simple geometry. 

On the contrary, the algorithm reveals underestimation of 

StO2 for subcutaneous vessels. For estimating saturation 

at minimal and maximal depths among all considered 

values z0 it is reasonable to account for the value of z0 in 

the reconstruction algorithm for a more precise 

estimation of StO2. 

It should also be noted that the values of ratio R are 

comparable for blood vessels and reconstruction artifacts 

(Figs. 9–10), which may lead to uncertainties in 

interpreting the constructed maps. The employment of 

illumination geometries of real OA systems and three-

dimensional reconstruction instead of simplified planar 

wave case considered in this study has potential to 

eliminate the reconstruction artifacts and provide with 

more precise estimation of oxygen saturation in 

surrounding tissues as well as in blood vessels, however, it 

requires larger computational power.  

4 Conclusion 

In this study, a set of OA images of biotissue with 

embedded vessels was numerically simulated for 

different orientations, diameters, embedding depths and 

blood oxygen saturation of vessels. Numerical 

simulations are based on sequential employment of 

developed MC algorithm and k-Wave Toolbox. The ratio 

of averaged OA signals corresponding to different 

probing wavelengths revealed monotonous dependence 

on blood oxygen saturation for different pairs of the 

wavelengths of 532, 680, and 1064 nm. The dependence 

of ratio R of OA signals corresponding to probing 

wavelengths of 658 nm and 1064 nm on blood oxygen 

saturation demonstrated the smallest variance for all 

diameters and depths of vessels and was employed for a 

simple estimation of StO2 value. The algorithm was 

based on the construction of inverse function StO2̃(𝑅) 

and voxel-by-voxel estimation of blood oxygen 

saturation value based on the calculated ratio R. Proposed 

algorithm was tested on simulated OA images for simple 

and complex vessel geometry. In the space of vessel 

diameters and embedding depths for a given true value of 

blood oxygen saturation there is an area of vessel 

diameters d and embedding depths z0 that are closed for 

the values contributing to the average ratio dependence, 

which provides the reconstruction accuracy better than 

3%. For the combination of vessel diameter d and 

embedding depth z0 above that area the precision is below 

15% for true StO2 values ≥ 0.8. Three-dimensional OA 

reconstruction employed instead of 2-dimensional 

modality considered in this study has potential to 

improve the algorithm performance, since it allows 

eliminating artifacts from OA images. Moreover, depth-

dependent StO2 reconstruction is expected to provide 

even higher accuracy. In this connection, employing a 

more advanced, however, time-consuming approach to 

OA image simulations in combination with machine 

learning techniques instead of the considered simple 

algorithm has high potential in accurate mapping of 

blood oxygenation based on spectral OA data. 
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