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Abstract

The encoding of sensory information in the human brain is thought to be optimised by two

principal processes: ‘prediction’ uses stored information to guide the interpretation of forth-

coming sensory events, and ‘attention’ prioritizes these events according to their beha-

vioural relevance. Despite the ubiquitous contributions of attention and prediction to various

aspects of perception and cognition, it remains unknown how they interact to modulate infor-

mation processing in the brain. A recent extension of predictive coding theory suggests that

attention optimises the expected precision of predictions by modulating the synaptic gain of

prediction error units. Because prediction errors code for the difference between predictions

and sensory signals, this model would suggest that attention increases the selectivity for

mismatch information in the neural response to a surprising stimulus. Alternative predictive

coding models propose that attention increases the activity of prediction (or ‘representation’)

neurons and would therefore suggest that attention and prediction synergistically modulate

selectivity for ‘feature information’ in the brain. Here, we applied forward encoding models to

neural activity recorded via electroencephalography (EEG) as human observers performed

a simple visual task to test for the effect of attention on both mismatch and feature informa-

tion in the neural response to surprising stimuli. Participants attended or ignored a periodic

stream of gratings, the orientations of which could be either predictable, surprising, or unpre-

dictable. We found that surprising stimuli evoked neural responses that were encoded

according to the difference between predicted and observed stimulus features, and that

attention facilitated the encoding of this type of information in the brain. These findings

advance our understanding of how attention and prediction modulate information process-

ing in the brain, as well as support the theory that attention optimises precision expectations

during hierarchical inference by increasing the gain of prediction errors.

Author summary

The human brain is theorised to operate like a sophisticated hypothesis tester, using past

experience to generate a model of the external world, testing predictions of this model
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against incoming sensory evidence, and generating a ‘prediction error’ signal that updates

the model when predictions and sensory evidence do not match. In addition to predicting

the content of sensory signals, an optimal system should also predict the reliability (or

‘precision’) of those signals to minimise the influence of unreliable sensory information. It

has been proposed that attention optimises this process by boosting prediction error sig-

nals, which are coded as the difference (or ‘mismatch’) between predicted and observed

stimulus features. Accordingly, this theory predicts that attention should increase the

selectivity for mismatch information in the neural response to surprising stimuli. We

tested this hypothesis in human participants by training a decoding algorithm to identify

‘mismatch information’ in the brain, recorded by electroencephalography (EEG), follow-

ing the presentation of surprising stimuli that were either attended or ignored. We found

that attention did indeed increase the selectivity for mismatch information in the neural

response, supporting the notion that attention and prediction are intricately related

processes.

Introduction

Perception is believed to arise from a process of active inference [1], during which the brain

retrieves information from past experiences to build predictive models of likely future occur-

rences and compares these predictions with incoming sensory evidence [2,3]. In support of the

idea that prediction increases the efficiency of neural encoding, previous studies have demon-

strated that predicted visual events typically evoke smaller neural responses than surprising

events (e.g., evoked activity measured in terms of changes in electrical potential or blood oxy-

gen level dependent [BOLD] response; for a review, see [4]). Recent studies have shown that

selective attention can increase [5] or reverse [6] the suppressive effect of prediction on neural

activity, suggesting that attention and prediction facilitate perception [7] via synergistic modu-

lation of bottom-up sensory signals [8–11]. It remains unclear, however, what type of informa-

tion is modulated in the interaction between attention and prediction. This question is

important because different predictive coding models make distinct predictions about how

information is transmitted through the cortical hierarchy [3,8,12,13]. Here, we used forward

encoding models to assess selectivity for two distinct types of information in the neural

response to surprising stimuli—feature and mismatch information—and to test the effect of

attention on these two informational codes.

A prominent version of predictive coding theory claims that top-down prediction signals

‘cancel out’ bottom-up sensory signals that match the predicted content, leaving only the

remaining prediction error to propagate forward and update a model of the sensory environ-

ment [2,8,9]. Because error propagation is thought to be associated with superficial pyramidal

cells [9], and these cells are thought to be primarily responsible for generating EEG signals

[14,15], this theory predicts that surprising events will increase the selectivity of EEG responses

to the difference between predicted and observed stimulus features, i.e., mismatch informa-

tion. Furthermore, a recent extension of this theory suggests that selective attention optimises

the expected precision of predictions by modulating the synaptic gain (postsynaptic respon-

siveness) of prediction error units [8]—i.e., neurons coding for behaviourally relevant predic-

tion errors should be more responsive than those coding for irrelevant prediction errors. On

this account, attention should further increase selectivity for mismatch information in the neu-

ral response to surprising stimuli relative to unsurprising stimuli. Here, we call this account

the ‘mismatch information model’.

Attention promotes prediction errors
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Alternative predictive coding models [12,13,16] propose that predictions—as opposed to

prediction errors—are propagated forward through the visual hierarchy, and it is these predic-

tion signals that are modulated by attention. For example, the model proposed by Spratling

[12] simulates the common physiological finding that attention to a stimulus enhances the fir-

ing rate of neurons tuned to specific stimulus features (e.g., orientation or colour for visual

neurons) and has been shown to be mathematically equivalent to the biased competition

model of attention [17–20]. In line with these alternative models, we investigated a second

hypothesis—here termed the ‘feature information model’—which proposes that the interac-

tion between attention and prediction at the level of neural responses is driven by changes in

feature-specific information in the brain.

Here, we tested whether the feature information model or the mismatch information

model provides a better account of the neural coding of surprising stimuli in the human brain

and examined the influence of selective attention on each of these two neural codes. Partici-

pants attended to, or ignored, periodic streams of visual gratings, the orientations of which

were either predictable, surprising, or unpredictable. We applied forward encoding models to

whole-brain neural activity measured using EEG to quantify the neural selectivity for informa-

tion related to the grating orientation and the mismatch between the predicted and observed

grating orientations. We show that surprising stimuli evoke neural responses that contain

information related to the difference between predicted and observed stimulus features, con-

sistent with the mismatch information model. Crucially, we also find that attention increases

the selectivity for mismatch information in the neural response to surprising stimuli, support-

ing the hypothesis that attention increases the gain of prediction errors [8].

Results

We recorded brain activity using EEG as human observers (N = 24) undertook a rare-target

detection task (see Methods; Fig 1). Participants fixated centrally and were presented with a

periodic stream of gratings (100 ms duration, 500 ms interstimulus interval, 415 gratings per

block) in one of two conditions (randomised across blocks). In ‘roving standard’ blocks [21]

(see Fig 1A), grating orientation was repeated between 4 and 11 times (‘standards’) before

changing to a new orientation (‘deviants’, pseudorandomly selected from one of nine orienta-

tions, spanning 0˚ to 160˚ in 20˚ steps). Grating orientation was thus ‘predictable’ for stan-

dards and ‘surprising’ for deviants. In ‘equiprobable blocks’ [22] (see Fig 1B), gratings changed

orientation on every presentation and thus could not be predicted (‘unpredictable’ controls).

Attention was manipulated by having participants either monitor the grating stimuli for rare

targets with a different spatial frequency (‘grating task’, gratings ‘attended’) or ignore the grat-

ings and instead monitor for rare fixation-dot targets with decreased contrast (‘dot task’, grat-

ings ‘ignored’).

Participants completed the grating task and dot task in separate sessions, approximately

one week apart (session order counterbalanced). At the beginning of each session, participants

completed three practice blocks of the specified task, during which target salience levels were

titrated to approximate a target detection rate of 75% (see Methods). Participants were then fit-

ted with a 64-electrode EEG cap before completing 21 test blocks. One participant detected

fewer than 50% of targets in both tasks and was therefore excluded from all further analyses.

The remaining participants detected an equivalent percentage of targets in the grating task

(75.64% ± 1.76%, mean ± SEM) and dot task (72.73% ± 2.54%; t[22] = 1.57, p = 0.13, BF10 =

0.12) and also produced similar numbers of false alarms in each (20.43 ± 3.79 and 22.57 ± 5.47,

respectively; t[22] = −0.41, p = 0.684, BF10 = 0.18), suggesting that difficulty was well matched

between attention conditions.

Attention promotes prediction errors
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EEG data were preprocessed offline using EEGlab [23] and epoched according to the onset

of each grating (see Methods for details). Statistical analyses were conducted using cluster-

based permutation tests in Fieldtrip [24]. S1 Fig shows the main effects and interactions for the

factors of attention and prediction on event-related potentials (ERPs). Briefly, ERPs were mod-

ulated by both attention (86–434 ms, cluster-corrected p< 0.001; S1A and S1C Fig) and pre-

diction (39–550 ms, cluster-corrected p< 0.001, S1A Fig). Follow-up analyses of the simple

effects of prediction revealed that deviants elicited larger responses than both standards (39–

550 ms, cluster-corrected p< 0.001; S1A and S1D Fig) and controls (324–550 ms, cluster-cor-

rected p = 0.002; S1A and S1E Fig). The difference between deviants and controls emerged

later and was smaller than the difference between deviants and standards, consistent with the

notion that the former comparison reflects the pure effects of prediction (‘genuine’ mismatch

response [MMR]) [22], whereas the latter comparison confounds the effects of prediction with

those of adaptation to the standard (‘classic’ MMR, see [4] for a review).

We also observed an interaction between attention and prediction (180–484 ms, cluster-

corrected p< 0.001; S1A Fig). Follow-up analyses revealed that attention increased both the

classic MMR (176–469 ms, cluster-corrected p< 0.001; S1F and S1G Fig) and the genuine

MMR (176–550 ms, cluster-corrected p< 0.001; S1H and S1I Fig). In the attended condition,

both the classic and the genuine MMRs emerged approximately 200 ms after stimulus onset

over posterior-lateral (PO7, PO8) electrodes (S1B Fig, solid green and yellow lines, respec-

tively). Whereas the onset of the genuine MMR is consistent with previous literature [22], the

classic MMR we report here emerged slightly later than what has typically been reported previ-

ously (about 150 ms; for a review see [4]). We note, however, that at least one previous study

Fig 1. Example stimuli in each of the two block types used in the study. (A) Roving oddball sequence. In this sequence,

the orientation of gratings was repeated over short sequences of stimuli (‘standards’), before changing to a different

orientation (‘deviant’). During the grating or dot task, participants responded to rare gratings with high spatial frequency

(‘grating target’) or to rare decreases in fixation-dot contrast (‘dot target’), respectively. (B) Equiprobable sequence. In

this sequence, the orientation of control gratings changed with each successive presentation.

https://doi.org/10.1371/journal.pbio.2006812.g001
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reported a visual MMR beginning as late as 250 ms [25], highlighting the variable nature of

this component.

In the ignored condition, we observed classic and genuine MMRs (S1B Fig, dotted green

and yellow lines, respectively) with positive polarities over posterior (PO7, PO8) and frontal

(Fz) electrodes, respectively. In contrast, previous studies have typically (but not always; see

[5]) reported MMRs with negative polarities, even in the absence of attention [4]. A number of

differences between previous studies and our own could explain this discrepancy (e.g., stimuli,

interstimulus interval, presentation duration, task, etc). In particular, we used large sinusoidal

gratings (11˚ of visual angle) to optimise orientation decoding, in contrast to previous studies

that presented much smaller oriented bars (about 3˚–4˚ of visual angle, e.g., [22,26]). Thus, the

stimuli in the current study likely activated a larger area of visual cortex than those used in pre-

vious studies, which produced a different dipole (or combination of multiple dipoles) and

associated projection to scalp electrodes (due to the complex folding structure of the cortex,

[4]) than has previously been observed. Indeed, close inspection of the ERPs seems to indicate

the presence of a single dipole projecting to frontal and posterior electrodes (note the highly

similar pattern of activity between electrodes Fz and Pz, but with opposite sign, S1A Fig),

which has not typically been observed in previous studies (e.g., note the relatively uniform

responses across the scalp in [22,27,28]).

Orientation information is enhanced with attention but not surprise

The feature information model predicts that the orientation-selective neural response to sur-

prising stimuli (deviants) will be different than that of control stimuli. To investigate this

hypothesis, we used a forward encoding model to estimate orientation selectivity from neural

activity measured with EEG (see Methods for details). Briefly, we used multivariate regression

to transform activity in electrode space into an orientation-selective ‘feature space’ [29–32],

comprising nine hypothetical ‘orientation channels’ matching those presented in the experi-

ment (0˚–160˚, in 20˚ steps). For each orientation channel, we modelled the expected activa-

tion across trials by convolving the presented orientation with a canonical orientation-selective

tuning function. We then regressed this pattern of expected activity against the EEG data, sepa-

rately for each time point (−100 to 550 ms after stimulus onset) to produce a weight matrix

that converted multivariate activity in electrode space into activity in the specified orientation

channel. The spatial weights for each orientation channel were then inverted to reconstruct the

forward model (hence why these models are also called ‘inverted encoding models’, e.g., [34])

and were applied to an independent set of test trials (using a cross-validation procedure) to

estimate activity across all orientation channels. As shown in Fig 2A, the forward encoding

approach reconstructed distinct response profiles for each of the nine grating orientations pre-

sented to participants. Orientation channels were then realigned for each trial such that the

presented orientation channel was centred on 0˚, and activation patterns were averaged across

trials in each condition. The forward encoding model revealed an orientation-tuned response

throughout the epoch (Fig 2B and 2C). This response emerged soon after stimulus onset,

peaked at about 130 ms, and declined gradually until the end of the epoch.

To quantify the effects of attention and prediction on orientation response profiles, we fit-

ted the condition-averaged orientation channel responses with an exponentiated cosine func-

tion [33,34] using least squares regression:

yðxÞ ¼ Aeҡðcos2ðx� mÞ� 1Þ þ B

such that y is the predicted orientation channel activity in response to a grating with orienta-

tion x, A is the peak response amplitude, ҡ is the concentration (i.e., inverse dispersion; a

Attention promotes prediction errors
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larger value corresponds to a ‘tighter’ function), μ is the centre of the function, and B is the

baseline offset (see Methods).

Attention increased the amplitude of orientation response profiles (219–550 ms, cluster-cor-

rected p< 0.001; Fig 3A and 3B) but did not modulate the tuning concentration (all clusters

p> 0.104). There was a significant main effect of prediction on the amplitude of orientation

response profiles late in the epoch (324–550 ms, cluster-corrected p< 0.001; S2C and S2D Fig),

as well as a nonsignificant but trending cluster early in the epoch (94–145 ms, cluster-corrected

p = 0.154; S2C Fig, cluster not shown). Follow-up analyses revealed that orientation response

profiles evoked by standards (0.11 ± 0.01 arbitrary units [a.u.]) were smaller than those of both

Fig 2. Stimulus-evoked orientation channel response profiles. (A) Reconstructed orientation channels, corresponding

to each of the nine grating orientations presented to participants (0˚–160˚, in 20˚ steps). Coloured dots indicate the

modelled orientation channel activity across trials in which the labelled orientation was presented. Curved lines show

functions fitted to the grand average data for illustrative purposes. Note that each coloured line is approximately centred

on the presented orientation. (B) Time-resolved orientation response profile, centred on the presented orientation in

each trial and averaged across participants and conditions. Orientation response profiles emerged shortly after stimulus

onset and lasted until the end of the epoch. (C) Orientation response profiles, averaged across all participants and

conditions in each of three successive 100 ms time windows. Dots show activation in each of the nine modelled

orientation channels (mean-centred). Curved lines show functions fitted to the grand average data for illustrative

purposes. Orientation information (response profile amplitude) was strongest from 100–200 ms and decreased

throughout the epoch. Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u., arbitrary units.

https://doi.org/10.1371/journal.pbio.2006812.g002
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deviants (0.25 ± 0.03 a.u.; t[22] = −4.32, p< 0.001, BF10 = 1,469.10) and controls (0.22 ± 0.03 a.

u.; t[22] = −3.79, p< 0.001, BF10 = 156.16; S2C and S2D Fig). Crucially, the amplitudes of

orientation response profiles evoked by deviants and controls were equivalent (t[22] = 0.78,

p = 0.443, BF10 = 0.19; Fig 3A, S2C and S2D Fig). Finally, there was no effect of prediction on

the concentration of orientation response profiles (all clusters p> 0.403) and no interaction

between attention and prediction on either the amplitude (cluster-corrected p = 0.093, S2E and

S2F Fig) or concentration (no clusters found) of orientation response profiles.

To determine the scalp topography that was most informative for orientation decoding, we

calculated univariate sensitivity separately for each electrode across all trials and averaged

across time points in the significant main effect of attention (see Methods). As revealed in Fig

3C, posterior electrodes were the most sensitive to orientation information, as would be

expected for a source in visual cortex.

Attention facilitates the neural encoding of mismatch information

The mismatch information model proposes that prediction errors are represented in popula-

tions of neurons tuned to the difference between predicted and observed stimulus features.

According to this model, therefore, surprising stimuli (deviants) should produce a more mis-

match-selective neural response than control stimuli. Furthermore, if attention enhances

the gain of prediction errors [8], we should expect an interaction between attention and pre-

diction, such that attention enhances the amplitude of mismatch response profiles evoked by

Fig 3. Effects of attention and prediction error on orientation and mismatch response profiles. (A–C) Orientation response profiles. (A)

Orientation selectivity (response profile amplitude) for each condition over time. Shading indicates the SEM. The grey bar along the x-axis indicates the

main effect of attention (cluster-corrected). (B) Orientation response profiles, averaged across the significant effect of attention shown in A (219–550

ms). Dots show activation in each of the nine modelled mismatch channels. Curved lines show functions fitted to channel responses (fitted to grand

average data for illustrative purposes). (C) Univariate sensitivity for stimulus orientation across all conditions (see Methods). Topography shows the

permutation-corrected z-scores, averaged across the significant effect of attention shown in A (219–550 ms). Posterior electrodes were the most

sensitive to orientation information. (D–F) mismatch response profiles (observed minus predicted orientation). (D) Mismatch selectivity (response

profile amplitude) for each condition over time. Bars along the x-axis indicate the main effect of attention (grey bar, top), the main effect of prediction

(black bar, middle), and the interaction (dotted black bar, bottom). Attention enhanced the mismatch response profile in response to deviants but not

controls. (E) mismatch response profiles, collapsed across the significant interaction shown in D (332–480 ms). (F) Univariate sensitivity for mismatch

response profiles evoked by attended deviants (see Methods), averaged across 332–480 ms. Posterior electrodes were the most sensitive to mismatch

information. Note that C and F use different scales. Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u., arbitrary units.

https://doi.org/10.1371/journal.pbio.2006812.g003
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deviants more than that of controls, because deviants should evoke a larger prediction error

[2]. To investigate these hypotheses, we trained a separate forward encoding model, as

described above, on the angular difference between gratings (deviants or controls) and the pre-

ceding stimuli. That is, deviants were coded according to the difference between the deviant

orientation and the preceding standard orientation, and controls were coded according to the

difference between successive control orientations. For example, if a horizontally oriented

deviant (0˚) was preceded by a standard that was oriented at 40˚ (clockwise of horizontal), it

would be coded as a mismatch of −40˚ (0˚–40˚).

As shown in Fig 3D and 3E, we were able to reconstruct mismatch response profiles for

attended deviants. By contrast, mismatch response profiles were clearly weaker in response to

controls and ignored deviants. There was a significant main effect of attention on the ampli-

tude of mismatch response profiles (attended > ignored, 188–550 ms, cluster-corrected

p = 0.002; Fig 3D, grey bar along x-axis). There was also a significant main effect of prediction

(deviant > control, 113–550 ms, cluster-corrected p< 0.001; Fig 3D, solid black bar along x-

axis), suggesting that prediction error is encoded according to the mismatch between pre-

dicted and observed features. Crucially, attention and prediction interacted to influence the

amplitude of mismatch response profiles (332–480 ms, cluster-corrected p = 0.031; Fig 3D,

dotted black bar along x-axis). As can be seen in Fig 3D and 3E, attention enhanced the ampli-

tude of deviant mismatch response profiles but had little effect on those evoked by controls,

supporting the hypothesis that attention boosts prediction errors [8].

The concentration of mismatch response profiles was not modulated by attention (all clus-

ters p> 0.888) or the interaction between attention and prediction (all clusters p> 0.615),

although we did find a significant main effect of prediction on the concentration of mismatch

response profile fits (controls > deviants, 344–422 ms, cluster-corrected p< 0.001). Because

controls seemed to produce negligible mismatch response profiles during this time period (yel-

low lines, Fig 3D), however, we followed up this result by averaging MMR amplitudes across

the significant timepoints and comparing these values to zero with a t test and Bayes Factor

analysis (uniform prior, lower bound: 0, upper bound = 0.3). We found that control mismatch

response profile amplitudes (0.005 ± 0.023 a.u.) were equivalent to zero (t[22] = 0.19,

p = 0.848, BF10 = 0.11), suggesting that the observed effect on concentration was more likely an

artefact of the fitting procedure than a true effect of prediction on mismatch response profiles.

We calculated the sensitivity of each electrode to mismatch information in trials that con-

tained attended deviants, and collapsed across the significant interaction between 332 and 480

ms. As revealed in Fig 3F, posterior electrodes were again the most informative, but the topog-

raphy of mismatch sensitivity was weaker and more sparsely distributed than that of orienta-

tion decoding (Fig 3C).

Mismatch information increases with the strength of predictions

Next, we investigated whether the number of preceding standards was related to the amplitude

of mismatch response profiles (putative prediction errors). Repeated presentations of the stan-

dard are thought to increase the strength of the memory trace, resulting in larger prediction

errors to a subsequent surprising stimulus [35]. Mismatch response profiles evoked by

attended deviants were grouped according to the number of preceding standards (4–7 repeti-

tions versus 8–11 repetitions) and fitted with exponentiated cosine functions (see Methods).

As can be seen in Fig 4A and 4B, increasing the number of standard repetitions also increased

the amplitude of mismatch response profiles (387–520 ms, cluster-corrected p = 0.050). This

finding is consistent with the notion that successive standards allow a more precise prediction

to be generated, which results in enhanced prediction errors when violated. Finally, there was
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no effect of the number of standard repetitions on the concentration of mismatch response

profiles (cluster-corrected p = 0.314).

Mismatch information increases with the magnitude of violation

We also tested whether larger deviations from the prediction increased selectivity for mis-

match information. Mismatch response profiles of attended deviants were grouped according

to the angular difference between the deviant and preceding standard (i.e., the original mis-

match values entered into the encoding model) and fitted with exponentiated cosine functions

(variable centre, see Methods). There was a significant main effect of deviation magnitude on

mismatch response profile amplitude (215–410 ms, cluster-corrected p = 0.004). As shown in

Fig 4C, the amplitude of mismatch response profiles increased with the absolute deviation

angle (±80˚> ±60˚ > ±40˚> ±20˚), supporting the notion that larger angular deviations

(from the predicted orientation) produce more prediction error. A second cluster emerged

later in the epoch (465–550 ms, cluster-corrected p = 0.031), which followed a similar pattern

but with the amplitude of the ±40˚ and ±60˚ responses reversed. Individual mismatch

response profiles were typically centred on the orthogonal deviation angle (90˚, Fig 4D). This

pattern of results differs from the individual orientation response profiles (Fig 2A), which were

(approximately) centred on the presented orientation.

Attention produces temporally stable mismatch response profiles

In a final step, we investigated whether the spatial maps that produce mismatch response profiles

are stable or evolve dynamically over time. We used the same encoding analysis as above, with

the exception that the trained weights at each time point were tested on all time points in the

Fig 4. Mismatch response profiles (putative prediction error) evoked by attended deviants. (A) Effect of standard

repetition on mismatch selectivity (response profile amplitude). Mismatch response profiles evoked by attended deviants

were larger following long standard sequences (8–11 repetitions) than short standard sequences (4–7 repetitions). The

black bar along the x-axis denotes significant differences (cluster-corrected). (B) Mismatch response profiles, collapsed

across significant time points in A (387–520 ms). Dots show activation in each of the nine modelled mismatch channels.

Curved lines show functions fitted to channel responses (fitted to grand average data for illustrative purposes). (C) Effect of

deviation angle on mismatch selectivity. Mismatch response profile amplitude increased with the magnitude of deviation

(±80˚> ±20˚). (D) Mismatch response profiles for each deviation angle, collapsed across the earlier cluster shown in C

(215–410 ms). Curved lines show functions fitted with a variable centre (fitted to grand average data for illustrative

purposes). Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u., arbitrary units.

https://doi.org/10.1371/journal.pbio.2006812.g004
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epoch [30,36] (see Methods). This produced a train time × test time generalisation matrix of

mismatch channel responses, to which we fitted exponentiated cosine functions. Fig 5 shows the

mismatch selectivity (response profile amplitude) for attended and ignored deviants, generalised

across time. As revealed in Fig 5A, the mismatch response profile evoked by attended deviants

generalised across the latter part of the epoch (black outline surrounding large red patch in

upper right quadrant between approximately 200 and 550 ms, cluster-corrected p = 0.010), indi-

cating that the spatial map associated with mismatch information was relatively consistent

throughout this period. Note also that this pattern of generalisation was asymmetrical (triangu-

lar-shaped rather than square-shaped). Specifically, spatial maps trained at late timepoints (e.g.,

between 400 and 450 ms) generalised to early (test) time points (e.g., between 250 and 300 ms),

but training at early timepoints did not generalise equally well to late timepoints. Since asym-

metrical generalisation can indicate differences in signal-to-noise ratios between time points

[36], this finding suggests that the strength of prediction error signals may have increased

toward the end of the epoch. It is also worth noting that the apparent generalisation of spatial

maps trained at stimulus onset (ttrain = 0) to later times in the epoch (about 200–550 ms, red

patch along the x-axis) was not significantly different from zero (no clusters found in this

region) and produced high residuals in the function fits (see S3 Fig), suggesting that this pattern

represents noise. Finally, the mismatch response profile evoked by ignored stimuli (Fig 5B) did

not generalise across time points (all clusters p> 0.935) and was significantly smaller than that

of attended stimuli (significant difference denoted by the opaque patch in Fig 5C; p = 0.026).

Discussion

Here we set out to determine what type of information is modulated in the interaction between

attention and prediction [8]. To achieve this, we used forward encoding models of EEG data to

quantify the selectivity for orientation and mismatch information in the neural responses to

surprising and unpredictable stimuli in the well-established roving oddball paradigm [21,37].

Relative to unpredictable stimuli (controls), we found that EEG responses to surprising stimuli

(deviants) were equally selective for orientation information, but more selective for informa-

tion related to the difference between predicted and observed stimulus features. These results

are consistent with the mismatch information model and support the idea that top-down

Fig 5. Generalised mismatch response profiles in response to (A) attended deviants and (B) ignored deviants. The dashed diagonal line indicates

on-axis encoding (equivalent to the time-series plot in Fig 3D). The black outline shows mismatch response profiles significantly larger than zero

(cluster-corrected). (C) Difference map (attended minus ignored), thresholded to show the significant effect of attention on mismatch response profiles

(cluster-corrected). Data are available at https://doi.org/10.17605/osf.io/a3pfq. a.u., arbitrary units.

https://doi.org/10.1371/journal.pbio.2006812.g005
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prediction signals ‘cancel out’ matching bottom-up sensory signals and leave only the remain-

ing prediction error to propagate forward [2,3,8,9]. Crucially, we also found that attention

increased the selectivity for mismatch information in neural responses to surprising but not

control stimuli. This finding demonstrates that attention boosts mismatch information evoked

by surprising stimuli (putative prediction errors) and is consistent with a recent version of pre-

dictive coding theory that proposes attention optimises the expected precision of predictions

by increasing the gain of prediction errors [8].

We found no difference between orientation response profiles evoked by surprising and

unpredictable stimuli (a prediction of the feature information model), suggesting that the

increase in EEG activity that is typically observed with surprise is not coded according to stim-

ulus features. This finding contradicts predictive coding models in which predictions (or ‘rep-

resentations’) of stimulus features are passed up the visual hierarchy [12,16,17]. Because

feedforward connections largely originate primarily from superficial pyramidal cells and it is

this activity that is measured with EEG [9,14,15], these models would predict that surprise

changes the feature selectivity of EEG responses: a finding we do not observe here. This finding

might also seem to contradict a recent study that demonstrated greater selectivity for orienta-

tion information in early visual cortex BOLD activity following presentation of a predicted

grating, relative to a surprising grating [38]. Since BOLD activity indirectly measures the activ-

ity patterns of heterogenous populations of neurons, however, this change in feature selectivity

could have reflected a change in either of the two neuronal populations proposed to underlie

predictive coding—predictions or prediction errors. The latter interpretation is inconsistent

with the results of the present study, which suggests that prediction errors are encoded accord-

ing to the mismatch between predicted and observed stimulus features, and not the features

themselves. The former interpretation (i.e., that predictions are coded according to the stimu-

lus features) fits well with a recent study that showed prediction induces feature-specific tem-

plates immediately prior to stimulus onset [31]. Thus, a parsimonious account of the literature

to date suggests that predictions and prediction errors are represented in the brain via distinct

neural codes: whereas predictions are represented according to stimulus features, prediction

errors are represented according to the mismatch between predicted and observed stimulus

features.

In a recent study by our group [39], we observed a decrease in orientation selectivity in the

neural response to predicted stimuli, relative to surprising stimuli, shortly after stimulus onset

(79–185 ms). Here, we observed a similar (but nonsignificant) trend in the same direction

(standards < deviants) at approximately the same time (94–145 ms, S2C Fig, cluster not

shown). Close inspection of the present results, however, suggests that some orientation

information evoked by the previous standard was still present in the brain at the onset of the

subsequent standard (indicated by the above-zero amplitude of the orientation response to

standards at stimulus onset, t = 0 ms, S2C Fig), which may have obscured detection of the

early effect reported in Tang and colleagues [39]. The present results revealed a late effect of

prediction (standards < deviants, 324–550 ms, S2C and S2D Fig) that was not observed in our

previous work [39]. Since a critical difference between the two studies was the number of

times identical stimuli could be presented consecutively (no more than twice in the previous

study), we speculate that the late effect observed here might reflect the minimal amount of

model updating required after the presentation of a precisely predicted stimulus.

We also found that attention increased the amplitude of orientation response profiles

(Fig 3A and 3B), consistent with previous studies that applied forward encoding models to

human functional MRI (fMRI) [34,40] and time-frequency-resolved EEG data [29]. The pres-

ent study replicates and extends these studies with the application of forward encoding models

to time-resolved EEG recordings (resulting in <30 ms temporal resolution after smoothing),
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demonstrating that attention increases feature selectivity in the human brain from approxi-

mately 200 ms after stimulus onset.

Crucially, we also tested the interactive effects of attention and prediction on information

processing in the brain. There was a large and significant effect of attention on mismatch

response profiles in response to surprising but not unpredictable stimuli (beginning around

150 ms after stimulus onset and reaching significance from about 350 ms). This finding dem-

onstrates that attention boosts mismatch prediction errors evoked by surprising stimuli and is

consistent with a recent iteration of predictive coding theory according to which attention

optimises the expected precision of prediction errors [8]. Previous studies have found evidence

for an interaction between attention and prediction in both the auditory [5] and visual [6,41]

modalities. These studies used activation-based analyses to compare differences between pre-

dicted and unpredicted stimuli at the level of overall neural activity but did not investigate

what type of information is modulated in the interaction between attention and prediction. In

contrast, the present study used information-based analyses [42] to identify specific patterns of

neural activity that are associated with orientation-mismatch information in the brain, and

showed that selectivity for this type of information (but not feature information) is increased

with attention. Thus, the present study provides clear support for the hypothesis that attention

boosts the gain of prediction errors [8]. It will be important for future research to investigate

whether the interactive effects of attention and prediction on mismatch information is contin-

gent on the type of attention (e.g., feature-based versus spatial attention) or prediction (e.g.,

rule-based versus multimodal cue-stimulus predictions; [31,43]).

We found that the magnitude of mismatch response profiles correlated with the number of

preceding standards (Fig 4A and 4B). Previous work in the auditory domain demonstrated

that successive repetitions of the standard evoke progressively increased responses to a subse-

quent attended deviant [35]. Here, we find a corollary for this effect in the visual domain and

demonstrate that the neural activity modulated by the number of preceding standards is likely

encoded as mismatch information. This finding is also consistent with the notion that repeat-

ing the standard allows a more precise prediction to be generated, which results in a larger pre-

diction error to a subsequent surprising stimulus [44].

We also found that mismatch response profiles increased with the magnitude of the mis-

match between predicted and observed stimulus features (Fig 4C). Previous work in the audi-

tory domain has demonstrated a correlation between deviation magnitude and the amplitude

of the neural response to deviants (i.e., the mismatch negativity) [45]. Here, we demonstrate a

relationship between deviation magnitude and selectivity for mismatch information (as

opposed to activation levels) in the visual domain, suggesting that the magnitude of mismatch

information might be used by the brain to guide updating of the predictive model. Since the

present study investigated mismatch signals with respect to a continuous and circular feature

dimension (i.e., orientation), it will be important for future research to extend the current line

of research to noncircular (e.g., luminance, auditory frequency) and categorical (e.g., facial

emotions) feature dimensions.

There was a lateral shift in the response profile of individual mismatch channels toward the

orthogonal (90˚) channel (Fig 4D). The extent of this effect depended on the deviation magni-

tude, with large deviations (±40˚–80˚) being predominantly stacked over the 90˚ channel and

smaller deviations (±20˚) being more closely aligned with their veridical mismatch angle (Fig

4D). We speculate that this might indicate a qualitative difference in the way that small and

large prediction errors were treated by the brain in the present study. Small deviations may

have resulted in updating and retention of the current model (via a near-veridical mismatch

signal), whereas large deviations may have resulted in the wholesale rejection of the current

model (via a generic mismatch signal) in favour of an alternative model that represents the
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deviant stimulus. In the latter case, the magnitude of the (orthogonal) mismatch channel

response might represent an efficient code that the brain utilises to select from a number of

likely alternative models.

A number of recent studies failed to find an interaction between the effects of attention

and prediction on stimulus information in the brain [31,38,46]. If predictions are encoded

according to stimulus features, as we argue above, these null findings contradict the theory

that attention boosts predictions [47]. In contrast, we show that prediction errors, represented

according to the mismatch between predicted and observed stimulus features, are enhanced

with attention. Although the present study cannot speak to the activity of single neurons, we

note that the emerging picture is consistent with the notion that predictions and prediction

errors are represented in distinct populations of neurons [2] that encode two distinct types of

information and are differentially influenced by attention. Under this framework, feature

information encoded by prediction units would be immune to attention, whereas mismatch

information encoded by prediction error units would be enhanced by attention. Future

research could test these hypotheses at the single-cell level, for example by using single-unit

electrode recordings or 2-photon calcium imaging to assess whether different neurons within

a given cortical area satisfy these constraints.

Methods

Ethics statement

The study was approved by The University of Queensland Human Research Ethics Committee

(approval number: 2015001576) and was conducted in accordance with the Declaration of

Helsinki. Participants provided informed written consent prior to commencement of the

study.

Participants

Twenty-four healthy participants (11 female, 13 male, mean = 23.25 years, SD = 9.01 years,

range: 18 to 64 years) with normal or corrected-to-normal vision were recruited via an online

research participation scheme at The University of Queensland.

Stimuli

Stimuli were presented on a 61 cm LED monitor (Asus, VG248QE) with a 1,920 × 1,080 pixel

resolution and refresh rate of 120 Hz, using the PsychToolbox presentation software [48] for

Matlab (version 15b) running under Windows 7 with a NVidia Quadro K4000 graphics card.

Participants were seated in a comfortable armchair in an electrically shielded laboratory, with

the head supported by a chin rest at a viewing distance of 57 cm.

During each block, 415 gratings with Gaussian edges (outer diameter: 11˚; inner mask

diameter: 0.83˚; spatial frequency: 2.73 c/˚; 100% contrast) were presented centrally for 100 ms

with a 500 ms ISI. Grating orientations were evenly spaced between 0˚ (horizontal) and 160˚

(in 20˚ steps). Eighteen (18) gratings in each block (2 per orientation) were presented with a

higher spatial frequency (range: 2.73–4.55 c/˚, as per staircase procedure, below), with a gap of

at least 1.5 seconds between any two such gratings. We used a modified de Bruijn sequence to

balance the order of grating orientations across conditions, sessions, and participants. Specifi-

cally, we generated two 9-character (orientation) sequences without successive repetitions

(e.g., ABCA, not ABCC)—one with a 3-character subsequence (504 characters long) and

another with a 2-character subsequence (72 characters long)—and appended two copies of the

former sequence to three copies of the latter sequence (1,224 characters in total). This master
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sequence was used to allocate the order of both deviants and controls in each session (using

different, random start-points) and ensured that each orientation was preceded by equal num-

bers of all other orientations (up to 2+ preceding stimuli) so that decoding of any specific ori-

entation could not be biased by the orientation of preceding stimuli.

In roving oddball sequences, the number of Gabor repetitions (i.e., standards) was balanced

across orientations within each session, such that each orientation repeated between 4 and 11

times according to the following distribution: (31, 31, 31, 23, 5, 5, 5, 5), respectively. During

each block, the fixation dot (diameter: 0.3˚, 100% contrast) decreased in contrast 18 times

(contrast range: 53%–98% as per staircase procedure, below) for 0.5 seconds (0.25-second lin-

ear ramp on and off). Contrast decrement onsets were randomised separately for each block,

with a gap of at least 1.5 seconds between any two decrement onsets.

Procedure

Participants attended two testing sessions of 60 minutes’ duration, approximately 1 week

apart, and completed one of two tasks in each session (Fig 1, session order counterbalanced

across participants). For the grating task, participants were informed that approximately 1

out of 20 of the gratings would be a target grating with a higher spatial frequency than non-

targets and were asked to press a mouse button as quickly as possible when they detected a

target grating; all other gratings were to be ignored. For the dot task, participants were

informed that the fixation dot would occasionally decrease in contrast and were asked to

press a mouse button as quickly as possible when they detected such a change. Participants

initially completed three practice blocks (3.5 min per block) with auditory feedback (high or

low tones) indicating missed targets and the accuracy of their responses. During practice

blocks in the first testing session, target salience (spatial frequency or dot contrast change,

depending on the task) was adjusted dynamically using a Quest staircase procedure [49] to

approximate 75% target detection. During practice blocks in the second testing session, target

salience was adjusted to approximate the same level of target detection observed in the first

testing session. Participants were requested to minimise their number of false alarms. After

the practice blocks, participants were fitted with an EEG cap (see ‘EEG data acquisition’)

before completing a total of 21 test blocks (3 equiprobable, 18 roving standard, block order

randomised) without auditory feedback. After each block, participants were shown the per-

centage of targets correctly detected, the speed of these responses, and how many nontargets

were responded to (false alarms).

Behavioural data analysis

Participant responses were scored as hits if they occurred within 1 second of the onset of a tar-

get grating in the grating task, or within 1 second of the peak contrast decrement in the dot

task. Target detection was then expressed as a percentage of the total number of targets pre-

sented in each testing session. One participant detected less than 50% of targets in both ses-

sions and was removed from further analysis. Target detections and false alarms across the two

sessions were compared with paired-samples t tests and Bayes Factors. Bayes factors allow for

quantification of evidence in favour of either the null or alternative hypothesis, with B01> 3

indicating substantial support for the alternative hypothesis and B01< 0.33 indicating substan-

tial support for the null hypothesis [50]. Bayes factors were computed using the Dienes [50,51]

calculator in Matlab, with uniform priors for target detection (lower bound: −25%; upper

bound: 25%) and false alarms (lower bound: −50; upper bound: 50).
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EEG data acquisition

Participants were fitted with a 64 Ag-AgCl electrode EEG system (BioSemi Active Two:

Amsterdam, the Netherlands). Continuous data were recorded using BioSemi ActiView soft-

ware (http://www.biosemi.com) and were digitized at a sample rate of 1,024 Hz with 24-bit

A/D conversion and a 0.01–208 Hz amplifier band pass. All scalp electrode offsets were

adjusted to below 20 μV prior to beginning the recording. Pairs of flat Ag-AgCl electro-oculo-

graphic electrodes were placed on the outside of both eyes, and above and below the left eye, to

record horizontal and vertical eye movements, respectively.

EEG data preprocessing

EEG recordings were processed offline using the EEGlab toolbox in Matlab [23]. Data were

resampled to 256 Hz and high-pass filtered with a passband edge at 0.5 Hz (1691-point Ham-

ming window, cut-off frequency: 0.25 Hz, −6 db). Raw data were inspected for the presence of

faulty scalp electrodes (2 electrodes, across 2 sessions), which were interpolated using the aver-

age of the neighbouring activations (neighbours defined according to the EEGlab Biosemi 64

template). Data were re-referenced to the average of all scalp electrodes, and line noise at 50

and 100 Hz was removed using the Cleanline plugin for EEGlab (https://www.nitrc.org/

projects/cleanline). Continuous data were visually inspected, and periods of noise (e.g., muscle

activity) were removed (1.4% of data removed in this way, across sessions).

For artefact identification, the cleaned data were segmented into 500 ms epochs surround-

ing grating onsets (100 ms pre- and 400 ms post-stimulus). Improbable epochs were removed

using a probability test (6 SD for individual electrode channels, 2 SD for all electrode channels,

6.5% of trials across sessions), and the remaining data were subjected to independent compo-

nents analyses (ICAs) with a reduced rank in cases of a missing EOG electrode (2 sessions) or

an interpolated scalp electrode (2 sessions). Components representing blinks, saccades, and

muscle artefacts were identified using the SASICA plugin for EEGlab [52].

For further analysis, the cleaned data (i.e., prior to the ICA analysis) were segmented into

800 ms epochs surrounding grating onsets (150 ms pre- and 650 ms post-stimulus). Indepen-

dent component weights from the artefact identification process were applied to this new data

set, and previously identified artefactual components were removed. Baseline activity in the

100 ms prior to each stimulus was removed from each epoch. Grating epochs were then sepa-

rated into their respective attention and prediction conditions. Epochs in the grating task were

labelled as ‘Attended’ and epochs in the dot task were labelled as ‘Ignored’. Epochs in the rov-

ing oddball sequence were labelled as ‘Deviants’ when they contained the first stimulus in a

repeated train of gratings and ‘Standards’ when they contained a grating that had been

repeated between 5 and 7 times. Epochs in the equiprobable sequence were labelled as

‘Controls’.

ERP analyses

Trials in each attention and prediction condition were averaged within participants to produce

ERPs for each individual. The effect of attention was assessed using a two-tailed cluster-based

permutation test across participant ERPs (Monte-Carlo distribution with 5,000 permutations,

pcluster< 0.05; sample statistic: dependent samples t statistic, aggregated using the maximum

sum of significant adjacent samples, psample< 0.05). Because there were 3, rather than 2, levels

of prediction, we tested the effect of prediction with a cluster-based permutation test that used

f-statistics at the sample level and a one-sided distribution to account for the positive range of

f-statistics (Monte-Carlo distribution with 5,000 permutations, pcluster< 0.05; sample statistic:

dependent samples f-statistic, aggregated using the maximum sum of significant adjacent
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samples, psample< 0.05). Simple contrasts between prediction conditions (deviants versus stan-

dards, and deviants versus controls) were tested using two-tailed cluster-based permutation

tests (with the same settings as used to investigate attention). The interaction between atten-

tion and prediction was assessed by subtracting the ignored ERP from the attended ERP within

each prediction condition and subjecting the resulting difference waves to a one-tailed cluster-

based permutation test across participant ERPs (Monte-Carlo distribution with 5,000 permu-

tations, pcluster< 0.05; sample statistic: dependent samples f-statistic, aggregated using the max-

imum sum of significant adjacent samples, psample< 0.05). The interaction effect was followed

up by comparing difference waves (attended minus ignored) between deviants and standards,

and between deviants and controls (two-tailed cluster-based permutation tests, same settings

as above).

Forward encoding models

To investigate the informational content of orientation signals, we used a forward encoding

model [29,53] designed to control for noise covariance in highly correlated data [31,54]

(https://github.com/Pim-Mostert/decoding-toolbox), such as EEG. We modelled an idealised

basis set of the 9 orientations of interest (0˚–160˚ in 20˚ steps) with nine half-wave rectified

cosine functions raised to the 8th power, such that the response profile associated with any

particular orientation in the 180˚ space could be equally expressed as a weighted sum of the

nine modelled orientation channels [29]. We created a matrix of nine regressors that repre-

sented the grating orientation presented on each trial in the training set (1 = the presented ori-

entation; 0 = otherwise) and convolved this regressor matrix with the basis set to produce a

design matrix, C (9 orientation channels × n trials). The EEG data could thus be described by

the linear model:

B ¼WCþ N;

such that B represents the data (64 electrodes × n trials), W represents a spatial weight matrix

that converts activity in channel space to activity in electrode space (64 electrodes × 9 orienta-

tion channels), and N represents the residuals (i.e., noise).

To train and test the forward encoding model, we used a 3-fold cross-validation procedure

that was iterated 100 times to increase reliability of the results. Within each cross-validation

iteration, the experimental blocks were folded into thirds: one-third of trials served as the test

set, and the remaining two-thirds served as the training set, and folds were looped through

until each fold had served as a test set. Across successive iterations of the cross-validation pro-

cedure, the number of trials in each condition was balanced within folds by random selection

(on the first iteration) or by selecting the trials that had been utilised the least across previous

folds (subsequent iterations).

Prior to estimating the forward encoding model, each electrode in the training data was de-

meaned across trials, and each time point was averaged across a 27.3 ms window centred on

the time point of interest (corresponding to an a priori window of 30 ms, rounded down to an

odd number of samples to prevent asymmetric centring). Separately for each time point and

orientation channel of interest, i, we solved the linear equation using least square regression:

wi ¼ Btrain ctrain;i
Tðctrain;i ctrain;i

TÞ
� 1
;

such that wi represents the spatial weights for channel i, Btrain represents the training data (64

electrodes × ntrain trials), and ctrain,i represents the hypothetical response of channel i across

the training trials (1 × ntrain trials). Following Mostert and colleagues [54], we then derived the
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optimal spatial filter vi to recover the activity of the ith orientation channel:

vi ¼
~P � 1

i wi

wT
i

~P � 1
i wi

;

such that Si is the regularized covariance matrix for channel i, estimated as follows:

~X

i ¼
1

ntrain � 1
εi ε

T
i

εi ¼ Btrain � wictrain;i;

such that ntrain is the number of training trials. The covariance matrix ~P
i was regularized by

using the analytically determined shrinkage parameter [31]. Combining the spatial filters

across each of the nine orientation channels produced a channel filter matrix V (64 elec-

trodes × 9 channels).

Ctest ¼ VT Btest;

such that Btest represents the test data at the time point of interest (64 electrodes × ntest trials),

averaged over a 27.3 ms window (as per the training data). Finally, the orientation channel

responses for each trial were circularly shifted to centre the presented orientation on 0˚, and

the zero-centred responses were averaged across trials within each condition to produce the

condition-average orientation channel response (Fig 3B).

To assess information related to the mismatch between predicted and observed stimulus

features (Fig 3D and 3E), we computed a second forward encoding model as above, with the

exception that now the regression matrix represented the difference between the current grat-

ing orientation (deviant or control) and the previous grating orientation (standard or control,

respectively). That is, a grating at 60˚ orientation that followed a grating at 20˚ orientation

would be coded as 40˚ (current minus previous orientation).

To assess the dynamic nature of mismatch response profiles (Fig 5), we trained the weight

matrix, W, at a single time point in the training set, B1 (using a 27.3 ms sliding window) and

then applied the weights to every third time point in the test set, B2 (using a 27.3 ms sliding

window). This process was repeated for every third time point in the training set, resulting in a

three-dimensional matrix that contained the population response profile at each cross-general-

ised time point (9 orientations × 66 training time points × 66 testing time points).

Quantifying channel responses

Previous studies have utilised a number of different methods to quantify the selectivity of neu-

ral response profiles [30,31]. Because we were interested in characterising the properties of

neural response profiles, we opted to fit an exponentiated cosine function to the modelled data

[33,34] using least square regression:

yðxÞ ¼ Aeҡðcos2ðx� mÞ� 1Þ þ B

such that y is the predicted orientation channel activity in response to a grating with orienta-

tion x; A is the peak response amplitude, ҡ is the concentration parameter, μ is the centre of

the distribution, and B is the baseline offset. Fitting was performed using the nonlinear least

square method in Matlab (trust region reflective algorithm). The free parameters A, ҡ, and B
were constrained to the ranges (−0.5, 2), (1.5, 200), and (−1.0, 0.5), respectively, and initiated

with the values 0.5, 2, and 0, respectively. The free parameter μ was constrained to be zero
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when quantifying mean-centred orientation or mismatch response profiles (which should be

centred on zero, Figs 3, 4A and 4B). When quantifying individual (uncentred) mismatch chan-

nel response profiles (Fig 4C and 4D), the free parameter μ was allowed to vary between −90˚

and 90˚. To reduce the likelihood of spurious (inverted) fits, the parameter search was initiated

with a μ value centred on the channel with the largest response.

The main effects of attention and prediction on orientation or mismatch response profiles

were assessed with cluster-based permutation tests across participant parameters (amplitude,

concentration). The interaction effects (between attention and prediction) on orientation and

mismatch response profiles were assessed by first subtracting the ignored response from the

attended response and then subjecting the resulting difference maps to cluster-based permuta-

tion tests. In cases where two levels were compared (i.e., the main effect of attention on orien-

tation response profiles, and all effects on mismatch response profiles), we used two-tailed

cluster-based permutation tests across participant parameters (Monte-Carlo distribution with

5,000 permutations, pcluster< 0.05; sample statistic: dependent samples t statistic, aggregated

using the maximum sum of significant adjacent samples, psample< 0.05). In cases where three

levels were compared (i.e., the main effect of prediction and the interaction effect on orienta-

tion response profiles), we used one-tailed cluster-based permutation tests across participant

parameters (Monte-Carlo distribution with 5,000 permutations, pcluster< 0.05; sample statistic:

dependent samples f-statistic, aggregated using the maximum sum of significant adjacent sam-

ples, psample< 0.05) and followed up any significant effects by collapsing across significant

timepoints and comparing individual conditions with paired-samples t tests and Bayes Factors

(uniform prior, lower bound: −0.3 a.u., upper bound: 0.3 a.u.).

Univariate electrode sensitivity

To determine which electrodes were most informative for the forward encoding analyses, we

tested the sensitivity of each electrode to both orientation and mismatch information (Fig 3C

and 3F). The baseline-corrected signal at each electrode and time point in the epoch was

regressed against a design matrix that consisted of the sine and cosine of the variable of interest

(orientation or mismatch), and a constant regressor [30]. We calculated sensitivity, S, using

the square of the sine (βSIN) and cosine (βCOS) regression coefficients:

S ¼
p
ðbSIN

2 þ bCOS
2Þ:

S was normalised against a null distribution of the values expected by chance. The null dis-

tribution was computed by shuffling the design matrix and repeating the analysis 1,000 times.

The observed (unpermuted) sensitivity index was ranked within the null distribution (to pro-

duce a p-value) and z-normalised using the inverse of the cumulative Gaussian distribution

(μ = 0; σ = 1). The topographies shown in Fig 3C and 3F reflect the group averaged z-scores,

averaged across each time period of interest.

Supporting information

S1 Fig. ERPs and MMRs. (A) ERPs at selected electrodes, shown separately for each condition.

Bars underneath each plot indicate time points at which there was a significant main effect of

attention (solid grey bar), significant main effect of prediction (solid black bar), or a significant

interaction between attention and prediction (dotted black bar) at the plotted electrode. (B)

Classic MMR (deviants minus standards) and genuine MMR (deviants minus controls) at

selected electrodes, plotted separately for each level of attention. Green and yellow lines denote

the classic MMR and genuine MMR, respectively; solid and dashed lines denote attended and

ignored stimuli, respectively. Bars underneath each plot indicate timepoints at which there was
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a significant MMR in the corresponding condition, at the plotted electrode. Attended deviants

were significantly different from attended standards (39–504 ms, cluster-corrected p< 0.001)

and attended controls (172–550 ms, cluster-corrected p< 0.001). Ignored deviants were signif-

icantly different from ignored standards (47–438 ms, cluster-corrected p< 0.001) and ignored

controls (285–461 ms, cluster-corrected p = 0.001) (C–I) Topographies of effects collapsed

across time points between 200 and 300 ms. Asterisks and dots denote electrodes with larger

or smaller responses, respectively, in at least 25% of the displayed time points. (C) Main effect

of attention (attended minus ignored). (D) Classic MMR (deviants minus standards). (E) Gen-

uine MMR (deviants minus controls). (F) Classic MMR during the grating task (attended devi-

ants minus attended standards). (G) Classic MMR during the dot task (ignored deviants

minus ignored standards). (H) Genuine MMR during the grating task (attended deviants

minus attended controls). (G) Genuine MMR during the dot task (ignored deviants minus

ignored standards). ERP, event-related potential; MMR, mismatch response.

(TIF)

S2 Fig. Independent main effects of attention and prediction on orientation response pro-

files, showing standards, deviants, and controls. (A) Main effect of attention on orientation

response profiles. The amplitude of attended gratings was larger than that of ignored gratings

(219–550 ms, cluster-corrected p = 0.001). Shading denotes standard error of the mean. The

black bar along the x-axis denotes significant time points. (B) Orientation response profiles,

collapsed across significant time points in A. Dots show activation in each of the nine modelled

orientation channels. Curved lines show the functions used to quantify the amplitude and con-

centration of orientation-tuned responses (fitted to grand average data for illustrative pur-

poses). (C) Main effect of prediction on orientation response profiles (black bar along the x-

axis denotes significant time points, 324–550 ms, cluster-corrected p< 0.001). The amplitude

of standards was reduced relative to both deviants and controls. (D) Orientation response pro-

files, collapsed across significant time points in C. (E) Interaction between attention and pre-

diction on orientation response profile amplitude. Time-courses show the effect of attention

(attended minus ignored) on each stimulus type. (F) Orientation response profiles, collapsed

across time points in the nonsignificant but trending cluster in E (414–481 ms, not displayed,

cluster-corrected p = 0.093).

(TIF)

S3 Fig. RSS for exponentiated cosine functions fitted to generalised mismatch response

profiles (Fig 5). Note the high RSS values along the x-axis beginning at 200 ms, indicating that

the apparent generalisation of spatial maps trained at stimulus onset to later times in the epoch

(Fig 5, red patch along the x-axis) was likely due to noise. RSS, residual sum of squares.

(TIF)
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22. Kimura M, Katayama J, Ohira H, Schröger E. Visual mismatch negativity: New evidence from the equi-

probable paradigm. Psychophysiology. 2009; 46:402–9. https://doi.org/10.1111/j.1469-8986.2008.

00767.x PMID: 19207207

23. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics

including independent component anlaysis. J Neurosci Methods. 2004; 134:9–21. https://doi.org/10.

1016/j.jneumeth.2003.10.009 PMID: 15102499

24. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis

of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011; 2011:1–9.

25. Tales A, Newton P, Troscianko T, Butler S. Mismatch negativity in the visual modality. Neuroreport.

1999; 10(16):3363–7. https://doi.org/10.1097/00001756-199911080-00020 PMID: 10599846

26. Astikainen P, Lillstrang E, Ruusuvirta T. Visual mismatch negativity for changes in orientation—a sen-

sory memory-dependent response. Eur J Neurosci. 2008; 28:2319–24. https://doi.org/10.1111/j.1460-

9568.2008.06510.x PMID: 19019200

27. Kimura M, Takeda Y. Automatic prediction regarding the next state of a visual object: Electrophysiologi-

cal indicators of prediction match and mismatch. Brain Res. 2015; 1626:31–44. https://doi.org/10.1016/

j.brainres.2015.01.013 PMID: 25598206

28. Kimura M, Takeda Y. Task difficulty affects the predictive process indexed by visual mismatch negativ-

ity. Front Hum Neurosci. 2013; 7(June):1–13. https://doi.org/10.3389/fnhum.2013.00267 PMID:

23781189

29. Garcia JO, Srinivasan R, Serences JT. Near-real-time feature-selective modulations in human cortex.

Curr Biol. 2013; 23(6):515–22. https://doi.org/10.1016/j.cub.2013.02.013 PMID: 23477721

30. Myers NE, Rohenkohl G, Wyart V, Woolrich MW, Nobre AC, Stokes MG. Testing sensory evidence

against mnemonic templates. Elife. 2015; 4(December):1–25. https://doi.org/10.7554/eLife.09000

PMID: 26653854

31. Kok P, Mostert P, de Lange FP. Prior expectations induce prestimulus sensory templates. Proc Natl

Acad Sci. 2017;1–6. https://doi.org/10.1073/pnas.1705652114 PMID: 28900010

32. Brouwer GJ, Heeger DJ. Cross-orientation suppression in human visual cortex. J Neurophysiol. 2011;

106:2108–19. https://doi.org/10.1152/jn.00540.2011 PMID: 21775720

33. Patterson CA, Wissig SC, Kohn A. Distinct effects of brief and prolonged adaptation on orientation tun-

ing in primary visual cortex. J Neurosci. 2013; 33(2):532–43. https://doi.org/10.1523/JNEUROSCI.

3345-12.2013 PMID: 23303933

34. Ester EF, Sutterer DW, Serences JT, Awh E. Feature-selective attentional modulations in human fron-

toparietal cortex. J Neurosci. 2016; 36(31):8188–99. https://doi.org/10.1523/JNEUROSCI.3935-15.

2016 PMID: 27488638

35. Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T. Event-related brain potential correlates

of human auditory sensory memory-trace formation. 2005; 25(45):10494–501. https://doi.org/10.1523/

JNEUROSCI.1227-05.2005 PMID: 16280587

36. King JR, Dehaene S. Characterizing the dynamics of mental representations: The temporal generaliza-

tion method. Trends Cogn Sci. 2014; 18(4):203–10. https://doi.org/10.1016/j.tics.2014.01.002 PMID:

24593982
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