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ABSTRACT
In this paper we analyze a Chemostat model with periodic nutrient input modelled using Fourier
series and incorporate delays in nutrient conversion. We show that both periodicity and delays
have complementing influence in the long term behaviour of the species. Numerical results show
that periodicity has bigger influence on species density variations for delays below the Hopf
Bifurcation point, while for delays above the Bifurcation point,the delay effect is more influential.
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1 INTRODUCTION

The chemostat is an important piece of laboratory
apparatus that occupies a central place in
ecological studies. It is designed for production
and functional study of micro-organisms. One of

the reasons why a chemostat is very useful is that
it can grow micro-organisms in a physiologically
steady state and it has the capacity to keep
constant all environmental conditions such as
PH, cell density, nutrient concentration etc. When
studying the interrelationships of organisms and
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their environments it’s difficult to trace the
mathematics, but the chemostat makes the
mathematics easily traceable (see for instance
Watman [1] and Zhao [2]).

The nature of many processes in modelling,
dictates use of time delays. Time delays occur
so often in real life that to try and snub them
in modelling is ignoring reality [3]. Nutrient
consumption for example, does not imply instant
growth, there must be time taken before further
reactions take place. In economics, money
supply is not direct consequence to change in
economy, their is time involved in price change.
Moreover, all humans without exclusions take
some time between conception and birth. There’s
also time involved in nutrient conversion and
maturation. In almost all applications in sciences,
there is a great need for incorporating time delays
due to the presence of process time. Recent
theoretical and computational advancements
in delay differential equations reveal that delay
differential equations are capable of generating
rich and plausible dynamics with realistic
parameter values [2].

Organisms live and interact in a fluctuating
environment. In pursuing the description of
natural processes, we search for periodic

patterns since they are useful in helping us
predict what they will do in future [4]. Even though
autonomous systems have been extensively
studied, non-autonomous systems are more
realistic because real-world models often require
incorporating temporal inhomogeneity in the
models. The environments of natural populations
undergo temporal variation, causing changes in
the growth characteristics of populations. One
of the methods of incorporating temporal non-
uniformity of the environments in models is to
assume that the parameters are periodic with
the same period of the time variable [5]. A good
example of physical environmental conditions
that fluctuates with time is temperature, humidity,
PH, and availability of important resources such
as water and food. All this vary with time and
seasons.

Past studies have shown that when creating
a periodic environment in a Chemosat model,
introducing the Fourier series is better than the
commonly used sine function [6] since Fourier
series enables one to demonstrate periodic
functions as infinite trigonometrical series
including functions that contain discontinuity. In
our study we use an appropriate Fourier series to
vary the nutrient input periodically.

2 THE MODEL

The chemostat model with periodic nutrient input and nutrient conversion delay is given by

Ṡ(t) =

(
S0(t) +

b

ω

n∑
j=1

(−1)j−1

2j − 1
cos(2j − 1)t− S(t)

)
D − µcx(t)S(t)

k + S(t)

ẋ(t) = x(t)

(
µS(t− τ)

k + S(t− τ)
−D

)
(2.1)

where:

S0(t) is the input concentration at time.
S(t) is the concentration of the substrate at time t.
x(t) is the concentration of the species at time t.
D is the dilution rate
µ is the maximum specific growth rate for the species
k is the Michaelis-Menten constant for the species
c is the constant of proportionality and the content of the nutrient in the species
τ is the delay term.

The nutrient input is given by a Fourier series function as
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S0(t) =

(
S0 +

b

ω

n∑
j=1

(−1)j−1

2j − 1
cos(2j − 1)t

)
models prolonged seasonal nutrient variations better

than the commonly used sine function [5],[7]).

System 2.1 has two rest points. The boundary rest point is given by (S
∗
, 0) and an interior one given

by (S
∗
, x∗) where 0 < min(S(t)) ≤ S

∗ ≤ max(S(t)) and 0 ≤ min(x(t) ≤ x∗ ≤ max(x(t)). For the

boundary rest point we have 0 < S0−| b
ω

n∑
j=1

(−1)j−1

2j − 1
cos(2j−1)t| ≤ S

∗ ≤ S0+| b
ω

n∑
j=1

(−1)j−1

2j − 1
cos(2j−

1)t | . We denote (S
∗
, x∗) as ξ∗(S∗, x∗).

The interior equilibrium point ξ∗(S∗, x∗), can be translated to the origin by letting S1(t) = S(t)−S∗ and
x1(t) = x(t) − x∗ and still denote them as S(t) and x(t) respectively. With the new transformations
of S1(t) and x1(t), system 2.1 now becomes:

Ṡ(t) =
(
S0(t)− S(t)− S∗)D − µc(S(t) + S∗)(x(t) + x∗)

(k + S(t) + S∗)

ẋ(t) = −D(x(t) + x∗) +
µ(S(t− τ) + S∗)(x(t) + x∗)

k + S(t− τ) + S∗ (2.2)

For brevity, we let

f =
(
S0(t)− S(t)− S∗)D − µc(S(t) + S∗)(x(t) + x∗)

(k + S(t) + S∗)

g = D(x(t) + x∗) +
µ(S(t− τ) + S∗)(x(t) + x∗)

k + S(t− τ) + S∗ (2.3)

We note that S(t) = x(t) = 0 and

∂f

∂x(t)
=

−µcS∗

k + S∗

∂f

∂S(t)
= −D − kx∗µc

(k + S∗)2

∂g

∂x(t)
= −D +

µS∗

k + S∗ and

∂g

∂S(t− τ)
=

kµx∗

(k + S∗)2

The linearized system becomes

Ṡ(t) = − µcS∗

k + S∗ x(t)−
(
D +

kx∗µc

(k + S∗)2

)
S(t)

ẋ(t) =

(
−D +

µS∗

k + S∗

)
x(t) +

(
kµx∗

(k + S)2

)
S(t− τ) (2.4)

Let m =
kµx∗

(k + S∗)2
and n =

µS∗

(k + S∗)

The characteristic equation of 2.4 is given by

λ2 + (2D − n+ cm)λ+ (D2 + cmD −Dn− cmn) + cmce−λτ = 0 (2.5)
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Letting n−D = k, β = cm+D, and l = cmn,the characteristic equation 2.5 simplifies to:

λ2 + (β − k)λ− βk + le−λτ = 0 (2.6)

We now show that under suitable conditions system 2.1 undergoes Hopf Bifurcation. Hopf Bifurcation
requires that the equilibrium point ξ(S∗, x∗) be asymptotically stable, 2.6 has imaginary roots, and Re(
dλ

dτ

)−1

|τ=τj> 0, j = 1, 2, 3..., simultaneously where τj is as defined in 2.10(see for instance [8],

[9] and [10].

Theorem 2.1. If

1. τ = 0 and (β − k) > 0,
2. l > βk, and
3. λ(τ) = α+ iω(τ) be a root of 2.1 near τ = τj satisfying α(τj) = 0 for ω(τj) = ω0,

then, as τ increases from zero, there exist a critical value say τ = τη such that the equilibrium point
ξ∗(S∗, x∗) is locally asymptotically stable and unstable as the delay term τ rises greater than the
critical value. Furthermore, the system 2.1 undergoes a Hopf bifurcation at the positive equilibrium
point ξ∗(S∗, x∗) for τ = τj , (j = 0, 1, 2, ...) as delay increases past the critical value

When τ = 0 and (β − k) > 0 we show that the equilibrium point ξ∗(S∗, x∗) of the system 2.2 is
asymptotically stable.

When τ = 0, the characteristic equation 2.6 becomes:

λ2 + (β − k)λ− βk + l = 0 (2.7)

Solving 2.7 by the quadratic equation yields:

λ1 =
−(β − k)±

√
(β − k)2 − 4(−βk + l)

2

But since β−k > 0 then, the real parts of λ1 will be negative, implying that the system is asymptotically

If l > βk the characteristic equation 2.6 has a pair of purely imaginary roots ±iω0, where

ω0 =

(
−(β2 + k2) +

√
(β2 + k2)− 4(β2k2 − l2)

2

)1

2

and when τ = τj then

τj =
1

ω0

(
cos−1 ω2

0 + βk

l
+ 2jπ

)
j = 0, 1, 2...

To show this, we let iω0 (where ω is non negative) be a root of 2.6 then (iω0)
2 + (β − k)ωi − βk +

l(cosωτ − i sinωτ) = 0 or:

− ω2 + i(β − k)ω − βk + l(cosωτ − i sinωτ) = 0 (2.8)

We separate the real part and the imaginary part to get:

−ω2 − βk + l cosωτ = 0

(β − k)ω0 − l sinωτ = 0
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Which means:

l cosωτ = ω2 + βk

l sinωτ = (β − k)ω (2.9)

squaring and adding both sides yields:

l2(cos2 ωτ + sin2 ωτ) = ω4 + ω2(2βk + (β − k)2) + β2k2

Which means ω4 + (β2 + k2)ω2 + β2k2 − l2 = 0. Therefore:

ω2 =
−(β2 + k2)±

√
(β2 + k2)2 − 4(β2k2 − l2)

2
or:

ω =

(
−(β2 + k2)±

√
(β2 + k2)2 − 4(β2k2 − l2)

2

)1

2

Assuming that l > βk it then implies

ω0 =

(
−(β2 + k2) +

√
(β2 + k2)− 4(β2k2 − l2)

2

)1

2

Furthermore, from the first part of 2.9 we have

cosωτ =
ω2 + βk

lor

ωτ =

(
cos−1 ω2 + βk

l
+ 2jπ

)
j = 0, 1, 2...

When τ = τj and ω = ω0

τj =
1

ω0

(
cos−1 ω2

0 + βk

l
+ 2jπ

)
j = 0, 1, 2... (2.10)

If we let λ(τ) = α+ iω(τ) be a root of 2.1 near τ = τj satisfying α(τj) = 0 for ω(τj) = ω0. Then the
following transversal condition will hold:

(α′(τ)−1) |τ= τj = Re

(
dλ

dτ

)−1

|τ=τj> 0, j = 1, 2, 3...

We differentiate λ implicitly on the characteristic equation 2.6 on both sides with respect to τ to obtain:

2λ
dλ

dτ
+ (β − k)

dλ

dτ
+ le−λτ (−λ(1)− τ

dλ

dτ)
= 0

Make
dλ

dτ
the subject of the formula to obtain:

dλ

dτ
(2λ+ (β − k)− le−λττ) = lλe−τλ or:

dλ

dτ
=

lλe−λτ

2λ+ (β − k)− lτe−λτ
(2.11)

and as defined above; τ = τj where j = 1, 2, 3... and λ = iω0 is a root where (ω > 0) Substituting
these values equation 2.11 becomes:

dλ

dτ
=

l(iω0)e
−iω0τj

2(iω0) + (β − k)− lτje−ω0iτj
(2.12)
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But from equation 2.8 le−iω0τj = ω2
0 − i(β − k)ω0 + βk Therefore 2.12 becomes:

dλ

dτ
=

(iω0(ω
2
0 − i(β − k)ω0 + βk)

2(iω0) + (β − k)− τj(ω2
0 − i(β − k)ω0 + βk

(2.13)

0r:

dλ

dτ
=

ω3
0i+ (β − k)ω2

0 + βkω0

((β − k)− ω2
0τj − βkτj) + (2ω0 + (β − k)ω0τj)i

(2.14)

We multiply both the numerator and the denominator by the conjugate of the denominator and we
only take the real parts to get:

Re

(
dλ

dτ

)
=

2ω4
0 + (β − k)2ω2

0 + 2βkω2
0

((β − k)− ω2
0τj − βkτj)2 + (2ω0 + (β − k)ω0τj)2

(2.15)

Hence:

Re

(
dλ

dτ

)
= α′(τj) =

ω2
0(2ω0 + β2 + k2)

((β − k)− ω2
0τj − βkτj)2 + (2ω0 + (β − k)ω0τj)2

> 0 (2.16)

This completes the proof.

2.1 Numerical Results for Single Species with Delay
In this section we present the numerical findings based on the above given theorem. The figures
below clearly agree with the theorem. For our numerical analysis we will use the following parameters
except for Fig. 1. where b = 0

Table 1. Parameter values used to graph 1, 2, 3 and 4

History Time S0 c D µ k b ω

[6,5] [0,900] 11 1 0.4675 0.571 0.5 8 π

Fig. 1. A graph of single species at equilibrium point, τ = 2.8
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Fig. 2. A graph of single species at the bifurcation point τ = 8.3

Fig. 3. A graph of single species with periodic nutrient input and a delay term τ = 2.3

Fig. 4. A graph of single species with periodic nutrient input and τ = 8.5
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Delay values are given in each graph.

When τ = 2.8 the system 2.1 is asymptotically
stable and the equilibrium points are as follows:

(S∗, x∗) = (2.2601, 8.7415)

Graphical representation is:

Fig. 1. is generated with S0(t) = S0(constant).

It indicates that with small delays, the density of
the species remains constant for 0 ≤ t < ∞. We
know that this is not true in nature. Therefore
besides delay, another factor must be at play that
causes the variations of species density even for
species with quick nutrient conversion time.

When we increase the delay from τ = 2.8 to
τ = 8.3 which is our bifurcation point, the periodic
solutions occurs. The graphical representation is:

In this Fig. 2. when τ is equal to the bifurcation
point, variations of species density is observed
from the beginning. This is what is observed
in nature. Clearly we need to modify these
parameters so that variations (in species density)
are observed both with small or large delays.
This is achieved by adding a periodicity term
previously defined as:

S0(t) = S0+
b

ω

n∑
j=1

(−1)j−1

2j − 1
cos((2j−1)t (2.17)

The graph with this modification are present
below.

In Fig. 3, both the periodicity and delays are at
play. We see that even for small delays, variations
of species density is well accounted for, just as
they are for large delays.

We note that when delay is increased above
the bifurcation point, the periodicity appears to
be more influenced by the delay other than the
periodic term in the nutrient input concentration.

3 CONCLUSION

An interesting observation is made when we
compare figs 1-4, it is demonstrated that for
small delays (τ < bifurcation point) the periodic
nutrient input has a more pronounced effect on
the density variation of species compared to the
effect of the delay. (Fig 1 vs 3). The effect of

periodic nutrient input on the species is masked
(atleast partially) by large delays (τ > bifurcation
value). In other words, periodicity has bigger
influence of species density variations for small
delays while for large delays,the delay effect
is more influential compared to the periodicity.
Further, if we let the nutrient input concentration
vary periodically using the Fourier series function
and amalgamate it with the delay term. The
seasonal variations of nutrients are clearly seen
from the graph. It is essential to note that
incorporating the delay at the same time varying
the input has significant results and evidently
they compliment each other and they are both
critical modification of the chemostat to ensure a
better chemostat equation for studying biological
systems.
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