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Abstract

The classification of Smooth Geometrical Manifolds still remains an open problem. The concept of
almost contact Riemannian manifolds provides neat descriptions and distinctions between classes
of odd and even dimensional manifolds and their geometries. We construct an almost contact
structure which is related to almost contact 3-structure carried on a smooth Riemannian manifold
(M, gM ) of dimension (5n+ 4) such that gcd(2, n) = 1. Starting with the almost contact metric
manifolds (N4n+3, gN ) endowed with structure tensors (ϕi, ξj , ηk) such that 1 ≤ i, j, k ≤ 3 of
types (1, 1), (1, 0), (0, 1) respectively, we establish that there exists a structure (ϕ4, ξ4, η4) on
(N4n+3 ⊗ Rd) ≈ M ; gcd(4, d) = 1, d|2n + 1, constructed as linear combinations of the three
structures on (N4n+3, gN ) . We study some algebraic properties of the tensors of the constructed
almost contact structure and further explore the Geometry of the two manifolds (N4n+3⊗Rd) ≈ M
and N4n+3 via a !submersion F : (N4n+3 ⊗Rd) ↩→ (N4n+3) and the metrics gM respective gN
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between them. This provides new forms of Gauss-Weigarten’s equations, Gauss-Codazzi
equations and the Ricci equations incorporating the submersion other than the First and
second Fundamental coefficients only. Fundamentally, this research has revealed that the
structure (ϕ4, ξ4, η4) is constructible and it is carried on the hidden compartment of the manifold
M ∼= (N4n+3 ⊗ Rd) (d|2n+ 1) which is related to the manifold (N4n+3).

Keywords: Almost contact structures; metric manifold.
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1 Introduction

Unless stated otherwise, we shall denote by (M5n+4, gM ) the 5n+4− dimensional smooth Riemannian
manifold isomorphic to (N4n+3⊗Rd) with a compatible metric gM where the gcd(2, n) = 1, gcd(4, d) =
1. This manifold carries 4-almost contact structures. We also denote by (N4n+3, gN ) the 4n +
3−dimensional smooth manifold carrying 3-almost contact structures and compatible with the
metric gN . Other notations are standard and can be found from the references. Due to the
epimorphism above, we study the geometry of (N4n+3 ⊗ Rd) via the manifold M5n+4.

A (2n + 1)−dimensional manifold M ∈ C∞ is called contact manifold if it admits a global 1-form
η such that η ∧ (dη)n ̸= 0 everywhere on M . The 1-form η is called a contact form of M . It is
well known that given a contact form η, there exists a unique vector field ξ satisfying η(ξ) = 1 and
dη(ξ,X) = 0 for any vector field X ∈ M [1]. Chinea and Gonzalez [2] obtained a classification of the
(2n+1)-dimensional almost contact metric manifold based on U(n)×1 representation Theory, which
is an analogy of the classification of the 2n-dimensional almost Hermitian manifolds established by
Gray and Hervella[3].

Almost 3-contact manifolds were introduced by Kuo[4] and independently, by Udriste [5] . To their
class belong also 3-Sasakian ,3-cosymplectic manifolds studied by Boyer and Galicki [6], whose
properties were also analyzed by Montano and De Nicola [7]. The almost contact 3-structure has
been defined by Kuo, Kuo-Tachibana [4, 8], Tachibana and Yu[9], and studied by them, Yano,
Eum and Ki[10], Sasaki [11] among other geometers. Some topics related to almost contact 3-
structures have been considered by Ishihara, Konishi [12, 13, 14] and Tanno [15]. It is well known
that the product of a manifold with almost contact 3-structure and a straight line admits an almost
quaternion structure (cf. [4]). Yano, Ishihara and konishi [16] studied the normality property of
almost contact 3-structures in the light the almost quaternion structure (F,G,H).

It has also been shown in [4] that given an almost contact 3-structure (ϕi, ξi, ηi), (i = 1, 2, 3), ∃ a
Riemannian metric g compatible with each of them and hence an almost contact metric 3-structures.
Moreover, the Reeb vector fields ξ1, ξ2, ξ3 are orthonormal with respect to the compatible metric and
the structural group of the tangent bundle is reducible to Sp(n)×I3. By putting H =

∩3
i=1 ker(ηi),

we obtain a 4n−dimensional distribution on M and the tangent bundle splits as the orthogonal
sum TM = H ⊕ V of horizontal and vertical distribution where V =< ξ1, ξ2, ξ3 >.

Blaga [17] has studied almost k−contact structure, by pointing out an isoparametric function
which can be associated in this framework, by generalizing a similar construction initiated by
Mihai and Rosca [18]. From Blag’s constructions, an almost k−contact manifold is found to be
(n+ k+ nk)−dimensional manifold M with k almost contact structures (ϕ1, η1, ξ1) , ..., (ϕk, ηk, ξk)
such that: ϕi ◦ ϕj = −δijIΓ(TM) + ηi ⊗ ξj +

∑k
l=1 ϵijlϕl and ηi(ξj) = δij .Other notions can also

be found in [1]. For instance, given an almost contact 3-structure (ϕi, ξi, ξi), define on M2m+1 ×R
there are three almost complex structures Ji; i = 1, 2, 3 associated to each of the almost contact
structures. It is then easy to check that Jk = JiJj = −JjJi. Therefore M2m+1 × R has an
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almost quaternionic structure, and hence its dimension is a multiple of 4. Thus the dimension
of a manifold with an almost contact 3-structure is of the form 4n + 3. Tachibana and Yu [9]
used this idea to show that there cannot be a fourth almost contact structure (ϕ4, ξ4, ξ4) with
ηi(ξ4) = η4(ξi) = 0, i = 1, 2, 3, and satisfying the anticommutativity conditions with the first three
structures. To see this, let J4 be the almost complex structure on M2m+1 × R constructed using
(ϕ4, ξ4, ξ4). Then pairing J4 with each of J1, J2, J3 yields J4Ji = −JiJ4, i = 1, 2, 3. This contradicts
J3J4 = J1J2J4 = −J1J4J2 = J4J1J2 = J4J3.

In fact, Blaga[17] assumed that the number of almost contact structures carried on a smooth odd
dimensional manifold will always be odd so that formularDim(M) = n+nk+k holds for a k−almost
contact manifold. This may not necessarily be the general case since the result below also follows:

Theorem 1.1. The dimension of a manifold with an almost contact k−structure is of the form
n+ (n− 1)k + 2k for an even k.

This research therefore demonstrates that it is possible to construct a fourth almost contact structure
(ϕ4, ξ4, η4) in terms of the first three structures iff it is carried on a manifold related to N4n+3 and
given by M5n+4 ∼= N4n+3 ⊗ Rd : gcd(2, n) = 1, gcd(4, d) = 1.

2 Fundamental Results

These preliminaries are standard and can be found in the references eg [1]:

Let M be a (2n+ 1)-dimensional differentiable manifold and ϕ, ξ, η be a field of endomorphisms of
the tangent spaces TM as a (1, 1)−tensor field, a vector field and a 1−form on M respectively. If
a triple (ϕ, ξ, η) satisfies the two conditions

η(ξ) = 1 (2.1)

ϕ2(X) = −X + η(X)ξ (2.2)

for any vector field X on M , (ϕ, ξ, η) is called an almost contact structure and M is called an almost
contact manifold.

Note that every almost contact manifold must have a non-singular vector ξ over M by the definition.

Proposition 2.1. For an almost contact structure (ϕ, ξ, η) on M,

ϕ(ξ) = 0..............(i), η ◦ ξ = 0.......(ii), rank(ϕ) = 2n........(iii) (2.3)

Proof. For a non-singular vector field ξ,

ϕ2(ξ) = −ξ + η(ξ)ξ = −ξ + 1.ξ = 0 (2.4)

and
0 = ϕ2ϕ(ξ) = −ϕ(ξ) + η(ϕ(ξ))ξ (2.5)

So we have
ϕ(ξ) = η(ϕ(ξ))ξ (2.6)

From 2.4, it follows that ϕ(ξ) = 0 or ϕ(ξ) is a non-zero vector field whose image is zero. Suppose
ϕ(ξ) is a nonzero vector field which goes to 0. In this case η(ϕ(ξ)) is not zero. If η(ϕ(ξ)) = 0, then
ϕ(ξ) = 0 in 2.6, which is a contradiction to the assumption. Then, by 2.6,

ϕ2(ξ) = ϕ(ϕ(ξ)) = ϕ(η(ϕ(ξ))ξ) = η(ϕ(ξ)).ϕ(ξ) = η(ϕ(ξ)).η(ϕ(ξ)).ξ = {η(ϕ(ξ))}2.ξ

and we have a nontrivial ϕ2(ξ) because η(ϕ(ξ)) and ξ are non-zero. But this contradicts to the fact
that ϕ2(ξ) = 0. Therefore we conclude that ϕ(ξ) = 0 and (i) is proved.
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Next, from 2.2, we get,

ϕ3(X) = ϕ(ϕ2(X)) = ϕ(−X + η(X)ξ) = ϕ(−X) + ϕ(η(X)ξ) = −ϕ(X) + ϕ(η(X)ξ)

for any vector X. On the other hand, we rewrite ϕ3(X) as;

ϕ3(X) = ϕ2(ϕ(X)) = −ϕ(X) + η(ϕ(X))ξ

⇒ η(ϕ(X))ξ = ϕ3(X) + ϕ(X) = −ϕ(X) + η(ϕ(X))ξ + ϕ(X) = η(ϕ(X))ξ = 0

from the previous result ϕ(ξ) = 0. Therefore η ◦ ϕ = 0 for any vector X.

We now claim that rank(ϕ) = 2n. Since ϕ(ξ) = 0, it is clear that ϕ has dimension less than or equal
to 2n. Suppose there exists another vector X of M such that ϕ(X) = 0. Then ϕ2(X) = ϕ (ϕ(X))︸ ︷︷ ︸

0

=

−X+ η(X)R implies that X = η(X)ξ

We next consider a metric on a manifold with an almost contact structure. We know that if M
is paracompact then M admits a Riemannian metric tensor and denote it by h

′
. We obtain a

Riemannian metric h by setting

h(X,Y ) = h
′
(ϕ2(X), ϕ2(Y )) + η(X)η(Y ) = h

′
[−X + η(X)ξ,−Y + η(Y )ξ] + η(X)η(Y )

and we have the following:

Lemma 2.1. Every almost contact manifold M admits a Riemannian metric tensor h such that

h(X, ξ) = η(X) (2.7)

for every vector field X on M

Proof. Let Y = ξ. Then, by definition of h,

h(X, ξ) = h
′
(ϕ2(X), ϕ2(ξ)︸ ︷︷ ︸

0

) + η(X) η(ξ)︸︷︷︸
1

= η(X)

We also have, h(ξ, Y ) = η(Y ) by setting X = ξ and h(ξ, ξ) = η(ξ) = 1 as required.

Proposition 2.2. Every almost contact manifold M admits a Riemannian metric tensor field g
such that

g(ϕ(X), ϕ(Y )) = g(X,Y )− η(X)η(Y ) (2.8)

Proof. Define g by g(X,Y ) = 1
2
(h(X,Y ) + h(ϕX, ϕY ) + η(X)η(Y )) with the same Riemannian

metric h as h(X, ξ) = η(X). We rewrite g(ϕ(X), ϕ(Y )) as:

g(ϕX, ϕY ) =
1

2
(h(ϕX, ϕY ) + h(ϕ2X,ϕ2Y ) + η(ϕX)η(ϕY )).

Since η ◦ ϕ = 0,

g(ϕX, ϕY ) =
1

2
(h(ϕX, ϕY ) + h(−X + η(X)ξ,−Y + η(Y )ξ))

=
1

2
(h(ϕX, ϕY ) + h(X,Y )− η(Y )h(X, ξ)︸ ︷︷ ︸

η(X)

−η(X)(h(ξ, Y )︸ ︷︷ ︸
η(Y )

) + η(X)η(Y )h(ξ, ξ)︸ ︷︷ ︸
1

)

=
1

2
(h(ϕX, ϕY ) + h(X,Y )− η(Y )η(X)− η(X)η(Y ) + η(X)η(Y ))
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=
1

2
(h(ϕX, ϕY ) + h(X,Y )− η(Y )η(X))

= g(X,Y )− η(X)η(Y )

Remark 2.1. Since η ◦ ϕ = 0,

g(ϕX, Y ) = g(ϕ2X,ϕY ) + η(ϕ(X))η(Y )

= g(ϕ2X,ϕY )

= g(−X + η(X)ξ, ϕY )

= g(−X,ϕY ) + η(X)g(ξ, ϕY )

= −g(X,ϕY )

because g(ξ, ϕY ) = g( ϕξ︸︷︷︸
0

, ϕ2Y ) + η(ξ) η(ϕY )︸ ︷︷ ︸
0

= 0. Hence, ϕ is a skew-symmetric tensor field with

respect to the metric g. That is ,

g(ϕX, Y ) + g(X,ϕY ) = 0.

If M admits a tensor field (ϕ, ξ, η, g) shown in the previous previous proposition, then we say that M
has an almost contact metric structure (ϕ, ξ, η, g) and is called an almost contact metric manifold.

Proposition 2.3. A (2n+1)−dimensional manifold M admits an almost contact structure (ϕ, ξ, η)
if and only if the structure group of its tangent bundle reduces to U(n)× 1.

Proof. Let ξ be a non-singular vector field on the almost contact manifold M and V = {v1, ..., vn,
ϕv1, ..., ϕvn, ξ} be an orthonormal basis of M. Then we have a matrix g as follows:



< v1, v2 > · · · < v1, vn > < v1, ϕv1 > · · · < v1, ϕvn > < v1, ξ >
< v2, v1 > · · · < v2, vn > < v2, ϕv1 > · · · < v2, ϕvn > < v1, ξ >

· · · · · · · · · · · · · · · · · · · · ·
< vn, v1 > · · · < vn, vn > < vn, ϕv1 > · · · < vn, ϕvn > < vn, ξ >
< ϕv1, v1 > · · · < ϕvn, vn > < ϕv1, ϕv1 > · · · < ϕv1, ϕvn > < ϕv1, ξ >

· · · · · · · · · · · · · · · · · · · · ·
< ϕvn, v1 > · · · < ϕvn, vn > < ϕvn, ϕv1 > · · · < ϕvn, ϕvn > < ϕvn, ξ >
< ξ, v1 > · · · < ξ, vn > < ξ, ϕv1 > · · · < ξ, ϕvn > < ξ, ξ >


Since gij =< vi, vj >=< ϕvi, ϕvj >= δij and gij =< ϕvi, vj >= 0 for all i, j, the matrix g is of the

form g =

 In 0 0
0 In 0
0 0 1

 and we see that ϕ =

 0 In 0
−In0 0 0
0 0 1

 because the rank of ϕ = 2n.

Moreover,

ϕ(V ) =

 0 In 0
−In0 0 0
0 0 1

 (v1, ..., vn, ϕv1, ..., ϕvn, ξ) = (ϕv1, ..., ϕvn,−v1, ...,−vn, 0)

and
ϕ(V ) = ϕ(ϕv1, ..., ϕvn,−v1, ...,−vn, 0) ⇒ ϕ(ϕ(vi)) = −vi, ϕ

2(ξ) = 0

Now, we take another orthonormal basis {v
′
1, ..., v

′
n, ϕv

′
1, ..., ϕv

′
n, ξ} of M with the same g and ϕ and

put

rv1 = v
′
1, ..., rvn = v

′
n, rϕv1 = ϕv

′
1, ..., rϕvn = ϕv

′
n, rξ = ξ
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We claim that the matrix r : M → M must have the form r =

 An Bn 0
−Bn An 0
0 0 1

 Let r : M → M

be of the form r =

 An Bn 0
Cn Dn 0
0 0 1

. Then, for a basis V,

r(V ) =

 An Bn 0
Cn Dn 0
0 0 1

 (v1, ..., vn, ϕv1, ..., ϕvn, ξ) = (v
′
1, ..., v

′
n, ϕv

′
1, ..., ϕv

′
n, ξ)

Substituting X for n−coordinates v1...vn and Y for another n−coordinates e
′
1, ..., e

′
n give us a

system of equations as follows of the form An(X)+Bn(ϕ(X)) = Y and Cn(X)+Dn(ϕ(X)) = ϕ(Y ).
Solving for Cn and Dn gives Cn = Bn and Dn = An. Therefore, the structure group of the tangent
bundle of M can be reduced to Un × 1.

Conversely, if the structure group of the tangent bundle of M can be reduced to Un × 1, then we

can define g =

 In 0 0
0 In 0
0 0 1

 and ϕ =

 0 In 0
−In0 0 0
0 0 1

. We can also give a vector field ξ by

(0, 0, ..., 0︸ ︷︷ ︸
2n

, 1) and a 1−form η by an associated 1−form of a vector field ξ. They satisfy the desired

conditions.

Corollary 2.2. The previous result holds necessarily and the structure group of the tangent bundle
of M reduces to U(n)× 1 and every element of U(n)× 1 has positive determinant.

3 The Fourth Structure (ϕ4, ξ4, η4) on M 5n+4 ∼= N 4n+3⊗Rd

The following results are important in the sequel:

Proposition 3.1. Let ϕ1, ϕ2 ∈ T(1,1), ξ1, ξ2 ∈ TM and η1, η2 ∈ TM∗. Suppose (ϕ1, ξ1, η1) and
(ϕ2, ξ2, η2) are both almost contact structures and satisfy:

ϕ1ϕ2 + ϕ2ϕ1 = η1 ⊗ ξ2 + η2 ⊗ ξ1, ϕ1ξ2 + ϕ2ξ1 = 0,

η1 ◦ ϕ2 + η2 ◦ ϕ1 = 0, η1(ξ2) = 0, η2(ξ1) = 0

then the sets (ϕ1, ξ1, η1) and (ϕ2, ξ2, η2) are said to define an almost contact 3-structure.

Proof. Putting ϕ3 = ϕ1ϕ2−η2⊗ξ1 = −ϕ2ϕ1+η1⊗ξ2, ξ3 = ϕ1ξ2 = −ϕ2ξ1 and η3 = η1◦ϕ2 = η2◦ϕ1.
We can easily verify that (ϕ3, ξ3, η3) defines an almost contact structure as follows:

Let X ∈ TM and ϕ2
3(X) = −I + η(X)ξ, then we have

η3(ξ3) = −η2 ◦ ϕ1(ξ3) = −η2(ϕ1(ξ3)) = −η2(ϕ1ξ3)

But
ϕ1η3 = ϕ1(ϕ1ξ2) = ϕ2

1ξ2 = −ξ2 + η1(ξ2)ξ1 = −ξ2 + 0 = −ξ2

So
−η2(ϕ1ξ3) = −η2(−ξ2) = η2(ξ2) = 1, ⇒ η3(ξ3) = 1

Next,
ϕ3ξ3 = ϕ3(−ϕ2ξ1) = ϕ3(−ϕ2(X)ξ1) = (ϕ1ϕ2(X))− η2(X)ξ1)︸ ︷︷ ︸

0

(−ϕ2(X)ξ1)
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= −ϕ1(ϕ
2
2(X)ξ1 − 0) = −ϕ1(ϕ

2
2ξ1) = −ϕ1(−ξ1 + η2(ξ1)︸ ︷︷ ︸

0

ξ2) = ϕ1ξ1 = 0

⇒ ϕ3ξ3 = 0

Next,

η3 ◦ ϕ3(X) = η3(ϕ3(X)) = η3(ϕ1ϕ2(X)− η2(X)ξ1) = η3((ϕ1ϕ2(X))− η2(X)η3(ξ1))

= −η2 ◦ ϕ1(ϕ1(ϕ2X)) + η2(X)η2 ◦ ϕ1(ξ1)− η2(ϕ
2
1ϕ2X) + η2(X)η2 (ϕ1(ξ1))︸ ︷︷ ︸

0︸ ︷︷ ︸
0

= −η2(−ϕ2X + η1(ϕ2X)ξ1) = η2(ϕ2X)− η1(ϕ2X) η2(ξ1)︸ ︷︷ ︸
0

= η2(ϕ2(X)) = 0

⇒ η3 ◦ ϕ3(X) = 0.

Furthermore, we can see that

ϕ1 = ϕ2ϕ3 − η3 ⊗ ξ2 = −ϕ3ϕ2 + η2 ⊗ ξ3, ϕ2 = ϕ3ϕ1 − η1 ⊗ ξ3 = −ϕ1ϕ3 + η3 ⊗ ξ1

ξ1 = ϕ2ξ3 = −ϕ3ξ2, ξ2 = ϕ3ξ1 = −ϕ1ξ3

η1 = η2 ◦ ϕ3 = −η3 ◦ ϕ2, η2 = η3 ◦ ϕ1 = −η1 ◦ ϕ3

Therefore, any two of (ϕ1, ξ1, η1), (ϕ2, ξ2, η2) and (ϕ3, ξ3, η3) define essentially the same almost
contact 3-structure. In this sense, we say that such almost contact structures (ϕi, ξi, ηi), (i = 1, 2, 3)
define in M an almost contact 3-structure.

Theorem 3.1. (cf.[4]) If a differentiable manifold admits 2 almost contact structures (ϕi, ξi, ηi) :
i = 1, 2, satisfying: η1(ξ2) = η2(ξ1) = 0, ϕ1ξ2 = −ϕ2ξ1 = ξ3, η1 ◦ ϕ2 = −η2 ◦ ϕ1 = η3 and
ϕ1ϕ2 − η2 ⊗ ξ1 = −ϕ2ϕ1 + η1 ⊗ ξ2 = ϕ3 then it admits a third almost contact structure (ϕ3, ξ3, η3).

3.1 The construction of (ϕ4, ξ4, η4)

Following the results of Tachibana and Yu [9], in this subsection, starting with 3-almost contact
structures, we construct an almost contact structure (ϕ4, ξ4, η4) such that ηi(ξ4) ̸= η4(ξi) ̸=
0, i = 1, 2, 3, necessarily. The dimension of the manifold carrying the 4-almostcontact structures
(ϕ1, ξ1, η1), (ϕ2, ξ2, η2), (ϕ3, ξ3, η3), (ϕ4, ξ4, η4) must be of the form 5n+ 4.
The following results are useful in our construction:

Proposition 3.2. (cf.[1]) About each point of an almost contact manifold Md, there exists local
coordinates (x1, ..., xn, y1, ..., yn, f) with respect to which η = df −

∑n
i=1 yidxi

Proof. In some coordinate neighborhood choose an open-ball transverse to ξ such that dη is
symplectic on this ball, and hence there exist local coordinates (x1, ..., xn, y1, ..., yn, f) such that
dη =

∑
dxi ∧ dyi. Now d(η +

∑n
i=1 yidxi) = 0 so that η +

∑n
i=1 yidxi = df for some function f .

Clearly, η ∧ (dη)n = df ∧ dx1 ∧ ...∧ dxn ∧ dy1 ∧ ...∧ dyn ̸= 0. Therefore df is independent of dx1dyi
and hence we can regard xi, yi and f as a coordinate system.

Proposition 3.3. (Existence Result) Let (M5n+4, ϕi, ξi, ηi, g); i = 1, 2, 3 be an almost contact
metric 3-structure. On M5n+3 × R, when 2 | m, we define an almost complex structure Ji by

J1

(
X, f

d

dt

)
=

(
ϕ1X − fξ1, η1(X)

d

dt

)
, J2

(
X, f

d

dt

)
=

(
ϕ2X − fξ2, η2(X)

d

dt

)
(3.1)

J3

(
X, f

d

dt

)
=

(
ϕ3X − fξ3, η3(X)

d

dt

)
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where X ∈ Γ(TM) and f ∈ C∞(M5n+3 × R). Let Ji; i = 1, .., , 3 be integrable, that is [Ji, Ji] = 0
so that (ϕi, ξi, ηi) is hypernormal. Suppose there exist another almost complex structure J4 such
that J4

(
X, f d

dt

)
=

(
ϕ4X − fξ4, η4(X) d

dt

)
and [Ji, Ji] = 0, then (ϕ4, ξ4, η4) is an almost contact

structure. Moreover if J3J4 = J1J2J4 = −J1J4J2 = J4J1J2 = J4J3, then (ϕ4, ξ4, η4) defines an
almost contact structure whose field of endomorphism satisfies the anticommutativity condition with
the other three.

We now proceed with our construction as follows:

Let (ϕ1, ξ1, η1), (ϕ2, ξ2, η2, ϕ3, ξ3, η3) be almost contact 3-structures on M5n+4. From Theorem 3.1,
we see that

ϕ1ϕ2 + ϕ2ϕ1 = η1 ⊗ ξ2 + η2 ⊗ ξ1 = 0 ϕ1ξ2 + ϕ2ξ1 = 0 (3.2)

so that ϕ1 = ϕ2ϕ3 − η3 ⊗ ξ2 = −ϕ3ϕ2 + η2 ⊗ ξ3, ϕ2 = ϕ3ϕ1 − η1 ⊗ ξ3 = −ϕ1ϕ3 + η3 ⊗ ξ1 and
ϕ3 = ϕ1ϕ2 − η2 ⊗ ξ1 = −ϕ2ϕ1 + η1 ⊗ ξ2. Similar descriptions can be given for ξi and ηi according
to the same result. We need to construct (ϕ4, ξ4, η4) such that each of the respective tensors is
expressed in terms of the first three above.

With obvious identifications, we see that ∃ some endomorphism constructible from ϕ1, ϕ2, ϕ3 which
are pairwise anti-commutative and thus:

ϕ1ϕ2 + ϕ2ϕ1 + ϕ1ϕ3 + ϕ3ϕ1 + ϕ2ϕ3 + ϕ3ϕ2 = η1 ⊗ ξ2 + η2 ⊗ ξ1+

η1 ⊗ ξ3 + η3 ⊗ ξ1 + η2 ⊗ ξ3 + η3 ⊗ ξ2 = 0 (3.3)

Exhausting the permutations of all the possible combinations of 3.3, results to possible constructions
for ϕ4, as follows:

ϕ4 = ϕ1ϕ2 + ϕ2ϕ3 + ϕ3ϕ1 −
(
η2 ⊗ ξ1 + η3 ⊗ ξ2 + η1 ⊗ ξ3

)
= −

(
ϕ2ϕ1 + ϕ3ϕ2 + ϕ1ϕ3

)
+ η1 ⊗ ξ2 + η2 ⊗ ξ3 + η3 ⊗ ξ1 (3.4)

Similarly,

ξ4 = ϕ1ξ2 + ϕ2ξ3 + ϕ3ξ1 = −
(
ϕ2ξ1 + ϕ3ξ2 + ϕ1ξ3

)
(3.5)

But

η1 ◦ ϕ2 + η2 ◦ ϕ1 + η1 ◦ ϕ3 + η3 ◦ ϕ1 + η2 ◦ ϕ3 + η3 ◦ ϕ2 = 0

and ηi(ξj) = ηj(ξi) = 0; i ̸= j, ηi(ξi) = 1, ηi(ϕi) = 0 ∀i = 1, 2, 3 so we need an appropriate η4 from
the construction such that the aggregate (ϕ4, ξ4, η4) is an almost contact structure. By inspection,
we immediately see that

η4 =
1

3

(
η1 ◦ ϕ2 + η2 ◦ ϕ3 + η3 ◦ ϕ1

)
= −1

3

(
η2 ◦ ϕ1 + η3 ◦ ϕ2 + η1 ◦ ϕ3

)
(3.6)

Proposition 3.4. Let n be an odd integer. The aggregate (ϕ4, ξ4, η4), given by the construction
above is the unique fourth almost contact structure on M5n+4 such that ηi(ξ4) = η4(ξi); i = 1, 2, 3.

Proof. Recall that ξ1 = ϕ2ξ3 − ϕ3ξ2, ξ2 = ϕ3ξ1 − ϕ1ξ3, ξ3 = ϕ1ξ2 − ϕ2ξ1. Let ϕ2
4 = −I + η4 ⊗ ξ4.

We need to show that η4(ξ4) = 1, ϕ4ξ4 = 0 and η4 ◦ ϕ4 = 0. Clearly,

η4(ξ4) =
1

3

(
η1 ◦ ϕ2 + η2 ◦ ϕ3 + η3 ◦ ϕ1

)(
ϕ1ξ2 + ϕ2ξ3 + ϕ3ξ1

)
=

1

3

(
{η1(ϕ2ξ1) + η1(ϕ2ξ2) + η1(ϕ2ξ3)}+ {η2(ϕ3ξ1) + η2(ϕ3ξ2) + η2(ϕ3ξ3)}+

{η3(ϕ1ξ1) + η3(ϕ1ξ2) + η3(ϕ1ξ3)}
)

=
1

3

(
− η1ξ3 + η1ξ1 + η2ξ2 − η2ξ1 + η3ξ3 − η3ξ2

)
=

1

3
(3) = 1 (3.7)
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Next,

ϕ4ξ4 =
(
ϕ1ϕ2 + ϕ2ϕ3 + ϕ3ϕ1 −

(
η2 ⊗ ξ1 + η3 ⊗ ξ2 + η1 ⊗ ξ3

))(
ξ1 + ξ2 + ξ3

)
=

(
ϕ1ϕ2ξ1 + ϕ1ϕ2ξ2 + ϕ1ϕ2ξ3 + ϕ2ϕ3ξ1 + ϕ2ϕ3ξ2 + ϕ2ϕ3ξ3 + ϕ3ϕ1ξ1 + ϕ3ϕ1ξ2

+ ϕ3ϕ1ξ3
)
−

(
η2

3∑
i=1

(ξi)⊗ ξ1 + η3

3∑
i=1

(ξi)⊗ ξ2 + η1

3∑
i=1

(ξi)⊗ ξ3
)

=
(
− ϕ1ξ3 − ϕ2ξ1 − ϕ3ξ2

)
−

( 3∑
i=1

(ξi)
)
=

( 3∑
i=1

(ξi)
)
−

( 3∑
i=1

(ξi)
)
= 0 (3.8)

Finally,

η4 ◦ ϕ4 =
1

3

(
η1 ◦ ϕ2 + η2 ◦ ϕ3 + η3 ◦ ϕ1

)(
ϕ4

)
=

1

3

((
η1 ◦ ϕ2 + η2 ◦ ϕ3 + η3 ◦ ϕ1

)(
ϕ4

))
=

1

3

{(
η1 ◦ ϕ2 + η2 ◦ ϕ3 + η3 ◦ ϕ1

)(
ϕ1ϕ2 + ϕ2ϕ3 + ϕ3ϕ1

)
−(

η1 ◦ ϕ2 + η2 ◦ ϕ3 + η3 ◦ ϕ1

)(
η2 ⊗ ξ1 + η3 ⊗ ξ2 + η1 ⊗ ξ3

)}
=

1

3

{
η1(ϕ2ϕ2ϕ3) + η2(ϕ3ϕ3ϕ1) + η1(ϕ1ϕ1ϕ2)

}
− 1

3

{
η1ϕ2(η2 ⊗ ξ1) + η1ϕ2(η3 ⊗ ξ2)+

η1ϕ2(η1 ⊗ ξ3) + η2ϕ3(η2 ⊗ ξ1) + η2ϕ3(η3 ⊗ ξ2) + η2ϕ3(η1 ⊗ ξ3) + η3ϕ1(η2 ⊗ ξ1)+

η3ϕ1(η3 ⊗ ξ2) + η3ϕ1(η1 ⊗ ξ3)
}

(3.9)

Applying a vector field ξi ∈ {ξ1, ξ2, ξ3} to equation 3.9, consider ξ2 say, we have:

1

3

{
η1(ϕ2ϕ2ϕ3ξ2) + η2(ϕ3ϕ3ϕ1ξ2) + η1(ϕ1ϕ1ϕ2ξ2)

}
− 1

3

{
η1ϕ2(η2(ξ2)⊗ ξ1) + η1ϕ2(η3(ξ2)⊗ ξ2)

+ η1ϕ2(η1(ξ2)⊗ ξ3) + η2ϕ3(η2(ξ2)⊗ ξ1) + η2ϕ3(η3(ξ2)⊗ ξ2) + η2ϕ3(η1(ξ2)⊗ ξ3)

+ η3ϕ1(η2(ξ2)⊗ ξ1) + η3ϕ1(η3(ξ2)⊗ ξ2) + η3ϕ1(η1(ξ2)⊗ ξ3)
}

=
1

3

(
η1ϕ2(−ϕ2ξ1)

)
− 1

3

(
η1(ϕ2ξ1) + η2(ϕ3ξ1) + η3(ϕ1ξ1)

)
=

1

3

(
η1(ϕ2ξ3)

)
− 1

3

(
− η1ξ3 + η2ξ2)

)
=

1

3

(
η1ξ1 − η2ξ2

)
= 0 (3.10)

Thus (ϕ4, ξ4, η4) is an almost contact structure on M5n+4 as required

Corollary 3.2. Let (M5n+4, gM ) ∼= (N4n+3⊗Rd, gM ) be the metric manifold discussed in this paper,
containing almost contact three structures (ϕi, ξi, ηi); i = 1, 2, 3 where ϕi are the 3 (1, 1) tensors, ξi
the 3 vector fields and ηi the three 1−forms respectively whose constructions are discussed in section
3. For an odd integer n, (M5n+4, g) contains an almost contact structure (ϕ4, ξ4, η4) constructible
from (ϕi, ξi, ηi); i = 1, 2, 3 whose tensors are given by:

ϕ4 =
∑

i=1,2,3, j=2,3,1

(
ϕiϕj

)
−

∑
i=1,2,3, j=2,3,1

(ηj ⊗ ξi) =
∑

i=1,2,3, j=2,3,1

−
(
ϕjϕi

)
+

∑
i=1,2,3, j=2,3,1

(
ηi ⊗ ξj

)
ξ4 =

∑
i=1,2,3, j=2,3,1

(ϕiξj) =
∑

i=1,2,3, j=2,3,1

−(ϕjξi)

η4 =
1

3

( ∑
i=1,2,3, j=2,3,1

(ηi ◦ ϕj)
)
=

1

3

( ∑
i=1,2,3, j=2,3,1

−(ηjϕi)
)

Moreover, ηi(ξ4) = η4(ξi) = 1, ∀i = 1, 2, 3.
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3.2 The Associated Metric gM of Tangent Bundle T (M5n+4)

Proposition 3.5. Let gI , gII , gIII , gIV be the positive definite metrics associated to the structures
(ϕ1, ξ1, η1), ..., (ϕ4, ξ4, η4) respectively in the differentiable manifold M of almost contact 4-structure.
Then there exists an associated metric of the structure such that if X,Y ∈ TM then ∀ i = 1, 2, 3, 4,

g(X,Y ) =
1

5

{
gIV (X,Y ) +

4∑
i=1

{
gIV (ϕi(X), ϕi(Y )) + ηi(X) + ηi(Y )

}}
(3.11)

Proof. Let gI be the associated metric t (ϕ1, ξ1, η1) then is easy to see that gII , gIII , gIV can be
defined as:

gII(X,Y ) = gI
(
X − η2(X)ξ2, Y − η2(Y )ξ2

)
+ η2(X)η2(Y )

gIII(X,Y ) = gII
(
X − η3(X)ξ3, Y − η3(Y )ξ3

)
+ η3(X)η3(Y )

and

gIV (X,Y ) = gIII
(
X − η4(X)ξ4, Y − η4(Y )ξ4

)
+ η4(X)η4(Y )

so that

5g(X,Y ) = gIV (X,Y ) +

4∑
i=1

{
gIV (ϕi(X), ϕi(Y )) + ηi(X) + ηi(Y )

}

4 Geometric Relationships between (M 5m+4, gM) and
(N 4n+3, gN) via Submersion

In this section, accordingly, we denote by gM the metric compatible with M5m+4 ∼= N4n+3 ⊗ Rd

defined by:

gM (X,Y ) =
1

5

{
gIV (X,Y ) +

4∑
i=1

{
gIV (ϕi(X), ϕi(Y )) + ηi(X) + ηi(Y )

}}
and by gN the metric compatible with N4n+3 defined by

gN (X,Y ) = gIII
(
X − η4(X)ξ4, Y − η4(Y )ξ4

)
+ η4(X)η4(Y )

Submersions between these Riemannian manifolds are useful for comparing geometric structures
between them.

Foundationally, a smooth map F : (M, gM ) → (N, gN ) between the Riemannian manifolds (M, gM )
and (N, gN ) is called isometric immersion (submanifold) if F∗ is injective and

gN (F∗X,F ∗ Y ) = gM (X,Y ) (4.1)

for X,Y ∈ TM and F∗ a derivative map.

A smooth map F : (M, gM ) → (N, gN ) is called a Riemannian submersion if F∗ is onto and satisfies
equation 4.1, for vector fields tangent to the horizontal space (kerF∗)

⊥.
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Let F : (M, gM ) → (N, gN ) be a smooth map between the above Riemannian manifolds M, N
such that 0 < rankF < min(5n+ 4, 4n+ 3), for odd n, where the dimension of M = 5n+ 4
and dimension of N = 4n+ 3, then we denote by kerF∗ the kernel space of F ∗ and consider the
orthogonal complementary space H = (kerF∗)

⊥ to kerF∗. Then, the tangent bundle of M has the
following decomposition:

TM = KerF∗ ⊕H

Similarly, we consider the orthogonal complementary space (rangeF∗)
⊥ to range F∗ in the tangent

bundle TN . Since, rankF < min(5n+ 4, 4n+ 3), we always have that (rangeF∗)
⊥ ̸= 0. Thus TN

has the following decomposition:

TN = (rangeF∗)⊕ (rangeF∗)
⊥.

There is a set of equations that can be used to describe the relationships between invariant quantities
on the empirical submanifolds N and ambient manifold M when the Riemannian connection is
used. These relationships can expressed by the Gauss’ formulae, Weingartens’ formulae and the
equations of Gauss, Codazzi and Ricci. The said equations can be thus extended to submersion
between M5n+4 and N4n+3.

To do this, we recall the pullback connection along a map and find the second fundamental form
of the map which is used to define the Gauss formula. We also obtain Weingarten formula for the
map using the linear connection ∇F⊥ in (F∗(TM))⊥. From Gauss-Weingarten formula, we obtain
Gauss, Ricci and Codazzi equations for submersion. The results below may be useful in the sequel.

Proposition 4.1. Let F : (M, gM ) → (N, gN ) be a map between M5n+4 and N4n+3 for m odd and
n then the following will equivalently hold:

(i) F is Riemannian at p1 ∈ TM and thus at every p ∈ M .

(ii) Πp1 is a projection.

(iii) Π
′
p1 is a projection.

Proof. Since (M5n+4, gM ) and (N4n+3) are Riemannian manifolds, the map F : M → N is
Riemannian map if there exists the adjoint map ∗F∗ of F∗ characterized by:

gM (X, ∗F∗p1Y ) = gN (F∗p1 , Y )

for some X ∈ Tp1M and Y ∈ TF (p1)N and p1 ∈ M . Additionally, F is a smooth map between the
manifolds M and N, thus we can define linear transformation:

Πp1 : Tp1M → Tp1M ; Πp1 = ∗F∗p1 ◦ F∗p1

Π
′
p1 : Tp2N → Tp2N ; Π

′
p1 = F∗p1 ◦ ∗F∗p1 .

Hence, Πp1 ◦Πp1 = Πp1 and Π
′
p1 ◦Π

′
p1 = Π

′
p1 . So both Πp1 and Π

′
p1 are projections and the results

above is completely characterized.

5 Gauss-Weingarten Formulas for the Submersion bet-
ween M and N

Let F : M → N be a smooth map between (M5n+4, gM ) and (N4n+3, gN ). Let p2 = F (p1) for

p1 ∈ M . Suppose that
N

∇ is a Levi-Civita connection on N, for X ∈ Γ(TM) and V ∈ Γ(TN), we
have:

N

∇X(V ◦ F ) = ∇N
F∗XV (5.1)
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where F−1TN is the pullback bundle which has fibres (F−1TN)p = TF (p)N for p ∈ M .
Hom(TM,F−1TN) has a connection ∇ induced from the Levi-Civita connection ∇M and the
pullback connection. The second fundamental form of F is given by:

(∇F∗)(X,Y ) =
N

∇F
XF∗(Y )− F∗(∇M

X Y ) (5.2)

X,Y ∈ Γ(TM). This form is symmetric. In addition (∇F∗)(X,Y ) ∈ Γ((kerF∗)
⊥), for X,Y ∈

Γ(TM), hence it lacks components in range F∗. The following results thus hold.

Proposition 5.1. Let F : M → N be the submersion described. Then,

gN ((∇F∗)(X,Y ), (F∗(Z))) = 0 (5.3)

For all, X,Y, Z ∈ Γ(kerF∗)
⊥

Proof. Clearly, (∇F∗)(X,Y ) ∈ Γ((rangeF∗)
⊥) ∈ Γ((kerF∗)

⊥), for X,Y, Z ∈ TM . Thus at any
p ∈ M , we write:

N

∇F
XF∗(Y )(p) = F∗(∇M

X Y )(p) + (∇F∗)(X,Y )(p) (5.4)

for all X,Y ∈ Γ(kerF∗)
⊥ where

N

∇F
XF∗(Y ) ∈ TF (p)N , F∗(∇M

X Y )(p) ∈ F∗p(TpM) and
(∇F∗)(X,Y )(p) ∈ (F∗p(TpM))⊥.

Let F : M → N be a Riemannian submersion, we define T and A as:

AEF = H∇M
HEVF + V∇M

HEHF (5.5)

TEF = H∇M
V EVF + V∇M

V EHF (5.6)

where E,F ∈ M and ∇M is the levi-civita connection on gM .

From TM = kerF∗ ⊕H, we see that, ΠE = TV E and AE = AHE , hence T and A are vertical and
horizontal respectively. Now T satisfies,

TUW = TWU

for all U,W ∈ Γ(kerF∗). Again, from equation 5.5 and 5.6 we have:

∇M
V W = TV W +

¬
∇V W (5.7)

∇M
V X = H∇M

V X + TV X (5.8)

∇M
X V = AXV + V∇M

X V (5.9)

∇M
X Y = H∇M

X Y +AXY (5.10)

for all X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗) where

¬
∇ = V∇M

V W . Let ∇N denote both the
levi-civita connection of (N, gN ) and its pullback along F. Then ∇F⊥ is a linear connection on
(F∗(TM))⊥ such that ∇F⊥gN = 0.

Proposition 5.2. Let F : M → N be a submersion. Then the map defined and denoted by SV as:

∇N
F∗XV = −SV F∗X +∇F⊥

X V (5.11)

where SV F∗X is the tangential component ( a vector field along F) of ∇N
F∗XV is symmetric linear

transformation.
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Proof. This has been obtained from the pullback connection of ∇N , thus at p1 ∈ M , we have:
∇N

F∗XV (p1) ∈ TF (p1)N , SV F∗X(p1) ∈ F∗p1(Tp1M) and ∇F⊥
X V (p1) ∈ (F∗p1(Tp1M)⊥). Clearly

SV F∗X is biliniear in V and F∗X and SV F∗X at p1 depend along on Vp1 and F∗p1Xp1 . By direct
computations, we obtain:

gN (SV F∗X,F∗Y ) = gN (V, (∇F∗)(X,Y )) (5.12)

for X,Y ∈ Γ(kerF∗)
⊥ and V ∈ Γ(rangeF∗)

⊥. Since (∇F∗) is symmetric, it follows that SV is a
symmetric linear transformation of range F∗.

Remark: The equations 5.1 is Gauss formula and equations 5.8, 5.9, 5.10 and 5.11 are weigharten
equations for F : M → N .

6 Gauss and Codazzi Equations for the Submersion F
between M and N

Let F : M → N be a submersion, consider a linear transformation given and define by:

Fλ
∗p1 : (kerF∗)

⊥(p1), gMp1((kerF∗)
λ(p1)) → (rangeF∗(p2), gNp2(rangeF∗p2)

Denote the adjoint of Fλ
∗ by ∗Fλ

∗ and by ∗F∗p1 the adjoint of

F∗p1 : (Tp1M, gMp1) → (Tp2N, gNp2). Then the linear transformation:

(∗F∗p1)
λ : rangeF∗(p2) → (kerF∗)

⊥(p1) defined by (∗F∗P1)
λY = ∗F∗p1Y where Y ∈ Γ(rangeF∗p1),

p2 = F (p1) is an isomorphism and (Fλ
∗p1)

−1 = (∗F∗p1)
λ = ∗(Fλ

∗p1).

From equations 5.1 and 5.11 respectively we have:

RN (F∗X,F∗Y )F∗Z = −S(∇F∗)(Y,Z)F∗X + S(∇F∗)(X,Z)F∗Y

+ F∗(R
M (X,Y )Z) + (∇X(∇F∗))(Y, Z)

− (∇Y (∇F∗))(X,Z) (6.1)

for all X,Y, Z ∈ Γ(kerF∗)
⊥ where RM , RN denote the curvature tensor of ∇M and ∇N the metric

connection on M and N. Moreover, (∇X(∇F∗))(Y,Z) is defined by:

∇X(∇F∗)(Y,Z) = ∇F⊥
X (∇F∗)(Y,Z)− (∇F∗)(Y,∇M

X Z) (6.2)

From equation 6.1, for any vector J ∈ Γ((kerF∗)
⊥), we have:

gN (RN (F∗X,F∗Y )F∗Z,F∗J) = gM (RM (X,Y )Z, J)

+ gN ((∇F∗)(X,Z), (∇F∗)(Y, J))

− gN ((∇F∗)(Y, Z), (∇F∗)(X, J)). (6.3)

Taking the Γ(rangeF⊥
∗ ) in equation 6.1 we have:

(RN (F∗X,F∗Y )F∗Z)⊥ = (∇X(∇F∗))(Y,Z)− (∇Y (∇F∗))(X,Z). (6.4)

The equations 6.1 and 6.3 are the Gauss and codazzi equations respectively for F : M → N .
Next, let X,Y ∈ TM and V⊥ ∈ Γ(rangeF∗), define the curvature tensor field RF⊥ of the subbundle
(rangeF∗)

⊥ by

RF⊥(F∗(X), F∗(Y ))V = ∇F⊥
X ∇F⊥

Y V −∇F⊥
Y ∇F⊥

X V −∇[X,Y ]
F⊥ (6.5)
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Then using Gauss-Weingarten equation 5.12, we obtain:

RN (F∗(X), F∗(Y ))V = RF⊥(F∗(X), F∗(Y ))V − F∗(∇M
X ∗ F∗(SV F∗(Y )))

+ S∇F⊥
X

V F∗(Y ) + F∗(∇M
Y ∗ F∗(SV F∗(X)))

− S∇F⊥
X

V F∗(X)− (∇F∗)(X, ∗F∗(SV F∗(Y )))

+ (∇F∗)(Y, ∗F∗(SV F∗(X)))− SV F∗([X,Y ]) (6.6)

where,

F∗([X,Y ]) =
N

∇F
XF∗(Y )−

N

∇F
Y F∗(X).

Then for F∗(Z) ∈ Γ(rangeF∗), we have:

gN (RN (F∗(X), F∗(Y ))V, F∗(Z)) = gN ((
∼
∇Y S)V F∗(X), F∗(Z))

− gN ((
∼
∇XS)V F∗(Y ), F∗(Z)) (6.7)

where,

(
∼
∇XS)V F∗(Y ) = F∗(∇M

X ∗ F∗(SV F∗(Y )))− S∇F⊥
X

V
F∗(Y )− SV Π

N

∇F
XF∗(Y )

where Π denotes the projection morphism on the range F∗. On the other hand, forW ∈ Γ(rangeF⊥
∗ ),

we get,

gN (RN (F∗(X), F∗(Y ))V,W ) = gN (RF⊥(F∗(X), F∗(Y ))V,W )− gN ((∇F∗)(X, ∗F∗(SV F∗(Y ))),W )

+ gN ((∇F∗)(Y, ∗F∗(SV F∗(X))),W ) (6.8)

Using Gauss-Weingarten equation 5.12 , we obtain:

gN ((∇F∗)(X, ∗F∗(SV F∗(Y ))),W ) = gN (SWF∗(X), SV F∗(Y )) (6.9)

Since SV is self adjoint, we get:

gN ((∇F∗)(X, ∗F∗(SV F∗(Y ))),W ) = gN (SV SWF∗(X), F∗(Y ) (6.10)

using equation 6.9 and 6.10 we arrive at:

gN (RN (F∗(X), F∗(Y ))V,W ) = gN (RF⊥(F∗(X), F∗(Y ))V,W )

+ gN ([SW , SV ]F∗(X), F∗(Y )) (6.11)

where [SW , SV ] = SWSV − SV SW . The last equation 6.11 is the Ricci equation for submersion
F : M → N .
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