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ABSTRACT 
Fuel injectors are considered as an important component of combustion engines. Operational weakness can pos-
sibly lead to the complete machine malfunction, decreasing reliability and leading to loss of production. To over- 
come these circumstances, various condition monitoring techniques can be applied. The application of acoustic 
signals is common in the field of fault diagnosis of rotating machinery. Advanced signal processing is utilized for 
the construction of features that are specialized in detecting fuel injector faults. A performance comparison be-
tween novelty detection algorithms in the form of one-class classifiers is presented. The one-class classifiers that 
were tested included One-Class Support Vector Machine (OCSVM) and One-Class Self Organizing Map (OC-
SOM). The acoustic signals of fuel injectors in different operational conditions were processed for feature ex-
traction. Features from all the signals were used as input to the one-class classifiers. The one-class classifiers 
were trained only with healthy fuel injector conditions and compared with new experimental data which be-
longed to different operational conditions that were not included in the training set so as to contribute to genera-
lization. The results present the effectiveness of one-class classifiers for detecting faults in fuel injectors. 
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1. Introduction 
In comparison to gasoline engines, diesel engines do not 
use a flammable mixture of gasoline and air. In diesel 
engines, compressed air is mixed with injected fuel in-
side the cylinder with a compression rate of circa 25:1. 
Combustion occurs in a temperature of 700˚C - 900˚C. 

Fuel injectors are critical components in diesel internal 
combustion engines. Moreover, they are used in gasoline 
engines. The injector’s diameter and orifice’s manufac-
turing tolerances should be adequate in order to ensure 
the proper functioning of the petrol engine. During fuel 
injector operation, carbonified fuel residues are deposited 
inside the injectors. These residues are able to cause par-
tial or total blockage. As a result, abnormal injection 
patterns occur which gradually worsen unless a solution 

to the problem is found or the injectors are replaced by 
new ones. 

Industrial products and equipment appraisal should be 
reliable. Good mechanical design is required for ensuring 
reliability. Also, quality fades as a function of time, even 
if the mechanical design of products is efficient. Pro-
longed operation under high load carries responsibility as 
well. Therefore, maintenance is a helpful way to assure a 
sufficient level of reliability. 

Albarbar et al. [1] investigated the identification of 
original sources for diesel engine acoustic data that were 
simulated. Three microphones were responsible for col-
lecting air-borne acoustic signals including combustion 
pressure, injector vibration and injector line pressure. 
The proposed method utilized the ICA algorithm for de-  
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composing the residual signal by disturbance elimination 
and noise cancelation. Wigner-Ville Distribution (WVD) 
helps in the definition of dominant combustion frequen-
cies while few data could be derived from diesel engine 
acoustic signals utilizing time domain and frequency do- 
main analysis. 

Elamin et al. [2] proved that signals stemming from a 
four cylinder diesel engine are suitable for detecting 
Acoustic Emission (AE) signal injector faults. Four tests 
were performed under various engine conditions. AE 
signals in the angular domain are able to aid in the diag- 
nosis for no load condition. A Continuous Wavelet 
Transform (CWT) was used for the analysis. From the 
above research, it can be easily assumed that CWT can 
tell a part small injection fault from healthy and demon-
strate diagnosis including both high and low load condi-
tions. 

In Zahi et al. [3], a diagnosis system introduced was 
specialized in detecting and isolating various faulty types. 
The study was concentrated on controlling the pressure 
of a diesel injection system. Both injectors and filling 
actuator situated on the pump were regulated by an elec-
tronic control unit, in order to stabilize the rail pressure at 
a desired level. They have demonstrated the potential of 
this method as suitable for managing a wide range of 
process failures and components. 

Lin et al. [4] presented a method to analyse the signal 
of simulated injector faults by using acoustic emission 
and pressure inside the cylinder. A comparison between 
the pressure and acoustic against baseline data from nor- 
mal engine operating conditions has shown that the 
acoustic emission technique is capable of detection of 
simulated injector faults. When operating at full load 
condition, the AE signal from the simulated fault can be 
utilized for detecting similar injector faults occurring in 
diesel engines in practice. 

Elamin et al. [5] examined the possibility of detecting 
injector faults in a JCB 444T2 diesel engine utilizing 
acoustic emission (AE) technique. Short time Fourier 
transformation (STFT) was applied to process AE signals 
acquired from a cylinder head of an engine. It was pro- 
ved that less fuel was provided into the cylinder and less 
energy was produced when the injection pressure was 
elevated. In contrast, when the injection pressure was 
lowered, more fuel was provided into the cylinder and a 
more profound AE transient was observed. It was dis-
covered that the main AE transients were derived from 
the combustion inside the cylinders and that the injection 
faults can be inferred from the main AE transients due to 
their high impact on the combustion. 

Jianmin et al. [6] attempted to extract data related to 
the condition of the fuel injection system, by analyzing 
the vibration response of the needle valve. The closing 
crash of the needle valve can excite head vibration which 

leads to the generation of a dual-peak in the signal during 
the combustion stage under certain work conditions. 
From the results, it is proved that these features can be 
utilized to diagnose fuel injection faults. 

In Albarbar et al. [7], adaptive filtering techniques 
were used to isolate the needle impact excitations resi-
dent inside the air-borne acoustic signals recorded from 
diesel fuel injectors. A Two Stages Adaptive Self-Tuning 
(AST) was used. The above scheme enhanced the diag-
nosis of faults and it was proposed as a tool for condition 
monitoring applicable in other similar rotating machinery 
like gearboxes and pumps. 

Two specialized classification strategies within an 
exemplary scenario intended for the verification of the 
Comprehensive Nuclear Test-Ban-Treaty (CTBT) were 
presented. It has been shown that One-Class (OC) clas-
sifiers can successfully be applied to classify Stochasti-
cally Episodic (SE) events, which are unknown, although 
present, at the time of training. The used one-class clas-
sifiers included SVM, MLP, Naive Bayes, Nearest 
Neighbour and Decision Tree Classifiers. 

Crupi et al. [8] focused on a new procedure, incorpo-
rating neural network that was designed and realized to 
evaluate the vibration signatures and recognize the fault 
presence. The system developed was able to diagnose a 
new fault not present in the training data set. For the no-
velty detection, a description of normality (normal ma-
chine behavior) was learnt by fitting a model to the set of 
normal examples, and anomalies or faults were detected 
as significant deviations from this description or normal 
domain (admissible or healthy). 

This work proposes fuel injector fault detection utiliz-
ing two novelty detection methods based on one-class 
classification, one-class Support Vector Machine (OCSVM) 
and one-class Self-Organizing Map (OCSOM). The sug-
gested method introduces new signal processing tech-
niques providing useful information to achieve fault rec-
ognition based on outlier detection. An original contribu-
tion includes the introduction of the new feature of line 
integral of the acoustic signal in combination with one- 
class classification for novelty detection. Acoustic sig-
nals were recorded by microphones from healthy and 
damaged fuel injectors, and seven (7) time-domain fea-
tures were extracted from the acoustic time signals. 

The one-class classifiers were calibrated only with 
healthy fuel injector conditions and compared with new 
experimental data which belonged to different operation-
al conditions that were not included in the training set so 
as to contribute to generalization. The results present the 
effectiveness of one-class classifiers for detecting faults 
in fuel injectors. 

2. Materials and Methods 
Firstly, measurements were performed in new or used 

OPEN ACCESS                                                                                        MME 



D. MOSHOU  ET  AL. 21 

tractors. As a result, the features of healthy injectors 
could be used for further appraisal and comparison with 
others that are suitable for future testing. Deviations that 
appeared in healthy injector signals could be utilized as 
indication of malfunctioning. 

The research was performed at the Agricultural Engi-
neering Laboratory of Agricultural University of Athens 
(AUA) during 2009-2010. The main objective of the re-
search was the prognosis and diagnosis of faults in agri-
cultural machinery. This research concentrated on diesel 
oil fuel injectors (becks) of petrol engines. 

The Collection of Acoustic time series was conducted 
by microphones for healthy fuel injectors as well as mal-
functioning ones. Seven time domain features were ex-
tracted from the acoustic signals. A Bearing Checker of 
SPM was used to test the injectors (Figure 1). The Bear-
ing Checker is a portable palmtop device, capable of de-
termining the health state of bearing in preventive main-
tenance. Bearing Checker measures shock pulse as well 
as surface temperature via an infrared sensing. It has a 
dual role as an electronic stethoscope for detecting ab-
normalities from engine sounds. 

In this work, Bearing Checker (manufactured by SPM 
Instrument) was applied for fuel-injector measurements. 
This device is utilized for recording impulse levels dur-
ing machine operation using an embedded microproces-
sor. The impulse analyzer extracts samples from various 
bearings and record determines status during operation. 
The Bearing Checker is incorporating a 1.5 mm head-
phone jack as presented in Figure 2. The Bearing check-
er’s output was connected to the computer sound card. 
By this way, the Bearing checker communicated with the 
computer. Sound storage was performed using the free 
program “Audacity” in mp3 format. Earphones were  

used in order to control the audio recording. The pro-
duced sound was transferred to a portable computer for 
advance processing (Figure 2). 

An electronic stethoscope was used for injector inves-
tigation. The produced sound was processed in a laptop 
computer. The experiments were performed both in 
healthy and damaged fuel-injectors. A New Holland 
TN65N tractor was utilized for data acquisition. In this 
tractor, all three fuel-injectors were controlled electroni-
cally. The condition of the injectors appears as follows: 
one healthy (fuel-injector 1), one slightly damaged (fuel- 
injector 2) and one was different from a healthy condi-
tion (fuel-injector 3). A short sample of the recorded 
signals is introduced in Figure 3. 

 

 
Figure 1. Bearing Checker device [9]. 

 

 
Figure 2. Data acquisition setup for sounds produced by 
faulty fuel-injectors. 

 

 
Figure 3. Waveforms that belong to three fuel injectors from the New Holland TN65N tractor. Signal samples between 
100,000 and 105,000 having a sampling rate of 44,100 Hz.  
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From the above mentioned, it is obvious that the first 

and second fuel injectors are considered as healthy. On 
the other hand, the third demonstrates several abnormali- 
ties owing to the fact that pulses do not include any clear 
definition. Moreover, the peak values vary irregularly. 
Furthermore, they appear only a few times during the exa- 
mination period. After two weeks, the experiments were 
repeated presenting same result. While experiments were 
carried out for second time, an unused injector replaced 
the faulty one in the New Holland TN65N tractor. The 
waveform of the new injector has given the impression of 
a healthy injector free of abnormalities (Figure 4). 

In addition, fuel-injector sounds data acquisition was 
performed on fuel-injectors belonging to a Zetor 7711 
tractor, applied for viticulture. Four fuel-injectors were 
already installed. All fuel-injectors (denoted as 4-5-6-7) 
didn’t belong to the healthy condition. As a result, it was 
necessary for all faulty fuel-injectors to be cleaned so as 

their functionality be established (Figure 5). 
From the above mentioned, it is easy to reach the con-

clusion that all fuel injectors belonging to the Zetor 7711 
are supposed to be at bad condition. Generally they all 
display a number of mechanical faults due to the fact that 
the pulses are not clearly formed. On the contrary they 
tend to differ, due to the peak values’ irregular appear-
ance. Thus, these mechanical faults tend to occur inter-
mittently during the examination period. The experi-
ments that were carried out again after two weeks pre-
sented similar results, compared with the New Holland 
TN65N tractor. 

To sum up, the injectors were eight. Three of them 
were tested on the New Holland TN65N tractor, while 
four of them were tested on the Zetor 7711. The damaged 
one was replaced by a healthy one. 

The first two steps included data acquisition and fea- 
ture extraction. The sound signal obtained from each 

 

 
Figure 4. Sample signal of the waveform of the newly installed intact fuel injectors incorporated into the New Holland TN65N 
tractor. The experiment comprised of samples between 100,000 and 105,000 which have a sampling rate of 44,100 Hz. 

 

 
Figure 5. Sample signal of the waveforms belonging to four fuel injectors of the Zetor 7711 tractor. Samples were between 
100,000 and 105,000 comprising of a sampling rate of 44,100 Hz.  
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injector consisted of 570,000 points. The signals were 
sampled at 44,100 Hz. The recording period was 12.925s 
for each injector. From these 1140 parts that belong to 
the sound signal (500 samples) were obtained from each 
injector. Seven (7) statistical features belonging to the 
time-domain were extracted from each part. Two one- 
class classifiers were applied, aiming to detect the pres-
ence of fuel faults in fuel injectors (OCSVM and OC-
SOM). A testing set was used for investigating the one- 
class classifiers’ generalization performance. The cali-
bration set included 2280 feature values consisting of 
1140 per type (intact and faulty). The experiment com-
prised of consecutive non-overlapping segments of 500 
samples. The training set comprised of 1710 feature val-
ues and a testing set of 570 feature values which con-
tained an equal amount of the two classes of fuel injector 
situation (healthy and damaged). By using training data 
from only one healthy fuel injector it was proven that 
one-class classifiers are capable of detecting the condi-
tion of both healthy and damaged injectors. 

3. Signal Processing and Feature Extraction  
When a fault diagnosis problem appears, features have to 
be extracted from the raw signal. In this way, general 
machine operation situations are reflected. However, 
some features are recognized as faults, others are not. In 
this study, seven (7) time-domain features parameters 
were chosen. 

Time-Domain Features 
Lei et al. [10] presented the following six features: Im-
pulse Indicator, Shape indicator, Skewness, Crest factor, 
Kurtosis, and Clearance indicator. Moshou et al. [11] has 
introduced the seventh feature which represents the line 
integral of the acceleration signal. Statistical information 
regarding the nature of data are provided by all the above 
mentioned features due to features’ specialization in de-
tecting faults in rotating machinery.  
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The symbols Xµ  that appear in Equations (1)-(6) 
Xσ  represent mean value and standard deviation. 
The new line integral feature is presented as follows: 
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Non-overlapping windows consisting of N = 500 sam-
ple points were used to determine Kurtosis and the other 
features. Ts denotes the sampling period. The lately pro-
posed feature of the line integral focuses on the fact that 
when high frequencies are abundant in a signal, the den-
sity of the signal increases in proportion. This affects the 
signal track because it is directly dependant on the signal 
variation. This parameter can supply a precise indication 
of frequency content. As a result, the overall length of 
the signal is affected by the frequency content. The esti-
mation can be easier for high sampling rates. Given the 
signals high sampling rate and high frequency (especially 
because of the occurrence of faults), the final approxima-
tion contained only acceleration values, therefore, the 
sampling period was not included. 

In safety critical applications for novelty fault detec-
tion, it is vital for the degree of change to be established. 
Normal system behaviour may change thanks to aging 
system modifications, seasonal changes are considered as 
responsible for bringing about alterations in operating 
conditions. A critical issue concerns the estimation of 
robust novelty thresholds leading to trustable novelty de- 
tection. Novelty detection algorithms structured around 
one-class neural networks must be calibrated with data 
which cover all possible normal conditions so that erro-
neous fault detection would not appear during normal 
operation.  

In the practical application of the injectors a unique 
fault description is not available but there exist examples 
of injectors that are either intactor have different faults 
which cannot be defined exactly. On the other hand the 
typical approach is not applicable because there are not 
distinct classes. Only healthy injectors were utilised as 
target group for classification leading to the selection of 
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one-class classification methods. 
One-class classification can be characterized as fol-

lows:  
• Only data belonging to the target class (not outlier 

class) is available for calibration;  
• The limit demarcating the border between the two 

classes has to be calculated from data stemming from 
the target class only; 

• The main task concerns the definition of a boundary 
surrounding the target class (to classify as many as 
possible of the target examples correctly, while si-
multaneously minimizing the prospect of accepting 
outlier examples). 

Figure 6 depicts a target domain XT where there are 
two errors which are defined as EI which is related to 
falsely rejected target examples and EII associated to 
falsely accepted outlier objects. The circular area symbo-
lizes the target domain of the selected one-class classifi-
er.  

Utilizing an even outlier distribution also leads to the 
assumption that when EII becomes smaller, the data de-
scription that has minimal volume is obtained. EI com-
bined with the volume of the description can be mini-
mized to get a good data description instead of minimiz-
ing both EI and EII. 

The One-Class SVM (OCSVM) constructs a model 
from performing callibration using normal data. At the 
second stage, classifies test data based on the deviation 
from normal training data as either normal or outlier [12]. 
The influence of the RBF’s spreading parameter in 

( ) { }2 2, expK x z x z σ= −  can be estimated consider-  

ing that a large spread indicates a linear class of target 
data while on the other hand, numerous support vectors 
combined with a small spread indicate a highly nonlinear 
case (Figure 7). 

Firstly, a One-Class SOM (OCSOM) is calibrated using 
normal operation data. Subsequently, the feature vector 
that corresponds to a new measurement is examined in 
order to assess its similarity to the weight vectors of 
every other map unit. If the smallest distance exceeds a 
predetermined threshold, it is assumed that the process 
belongs to a fault situation. This result emanates from the 
assumption that quantization errors exceeding a certain 
 

 
Figure 6. Domains of target dataset and one-class classifier. 

 
Figure 7. The influence of the RBF spreading parameter on 
the behaviour of the One-Class SVM [13]. 
 
value are associated with the operation points that are 
external to the region that has been covered by the train-
ing data. Hence the situation is novel and raising the pos-
sibility of abnormality detection. Depending on the mag-
nitude of deviation from the normal operation state, a 
degradation index can be calculated. The One-Class SOM 
(OCSOM) constructs a model from healthy fuel-injector 
data and subsequently classifies new data according to its 
deviation from the healthy training data. During novelty 
recognition, novel examples from fuel-injectors of not 
definable health state are used to formulate the input to 
the network while the SOM algorithm selects the best 
matching unit. In Saunders and Gero [14] if the quantisa-
tion error that results from the comparison between the 
new exemplar data (xNEW) and best matching unit (bmu) is 
larger than a pre-specified threshold (d) then the example 
is considered as novel. Equation (8) represents the mini-
mum distance for the bmu and examines it against the 
threshold. 
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where M denotes the SOM grid of neurons similar to 
Equation (8). 

There are various heuristics to determine a threshold 
based on the usefulness of the threshold and the specific 
structure of the data set. A simple way to define a thre-
shold (d) depends on the similarity between the SOM 
centroid vectors and target training vectors that have se-
lected them as best matching units which determines the 
quantization error. These distances have to be estimated 
according to Equation (9): 
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The threshold is estimated by utilizing the Matlab code 
which is presented below: 

Data _distances_sorted = sort(distances); 
Fraction = round(fraction_targets * length(target_set)); 
Threshold = (Data _distances_sorted(fraction) + Data 

_distances_sorted (fraction + 1))/2; 
Through the threshold’s selection aiming to represent a 

fraction of distances referring to the whole training set, it 
is possible to get distance values which represent the 
codebooks data vectors more proximally, especially 
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when the distances are formed. As a result, the quantisa-
tion errors might be caused by the outliers. Hence, the 
fraction error is capable of representing a subset of the 
distances that were measured so that it can isolate outlier 
values utilizing a specific distribution. For example, if 
the 99% fraction of the distances between data and co-
debooks is selected as belonging to the dataset, it is easy 
to determine a descriptive hypersphere so that it is radius 
covers the 99% of the data. This remaining 1% corres-
ponds to outliers which will be classified as such since 
they are located outside the target set description area. 
According to Figure 6 this is possibly a contributing 
factor to EI while the target data description has been 
minimized by imposing a threshold according to a pre-
determined fraction of the data. In others words, by con-
straining the target data description there is a cost to in 
incurring in terms of falsely rejected examples. These 
results have to be tolerated in order to obtain a more pre-
cise novelty detection which would not be impossible if 
the rate of acceptance would be high because of a very 
high threshold. In Figure 8, it is easily seen that different 
areas are defined by the threshold in correspondence best 
matching units. 

The best matching units define Voronoi polygons 
which represent the domains of the OCSOM neurons. It 
is evident that some points would be selected as lying 
inside a domain of neuron now are situated outside the 
threshold-defined polygon which defines the border be-
tween target data and  novel data which belong acoustic 
signatures originating from damaged components (for 
illustration purposes, actual data are of high dimension so 
the so direct visualization is not possible). 

4. Results and Discussion 
The seven time-domain feature were presented as shown 
in Figure 9. These features follow a specific order of 
presentation to One-Class Support Vector Machine (OC- 
SVM) and One-Class Self-Organising Map (OCSOM). 
The order of presentation did not have an effect on the 
results. 

In the presented fault detection application seven fea-
tures extracted from acoustic time series were supplied to 
the one-class classifiers. The seven features can possibly 
provide a more precise separation of classes with respect 
health condition especially due to their complementarity. 

Initially, an OCSVM was used to classify the injectors 
to a target class corresponding to healthy injectors and 
detect outliers indicating injectors that are malfunction-

ing. As target class, features that belong to injector 1 
have been used. All injectors that remain have been uti- 
lized so as to investigate the performance of the OCSVM. 
The OCSVM was calibrated by separating the data to 75% 
for training and 25% for testing. Sets have resulted in 
99.82% correct classification for the target class of in-
jector 1 and 100% when using injector 7 as outlier class 
for testing. These were results for a spread parameter of 
1.97 which demonstrated the best results by testing dif-
ferent spreads between 0 and 10. Further testing of the 
obtained OC-SVM classifier was performed by utilizing 
all available injectors. Results are presented in Table 1. 
It is obvious, that all injectors have been identified cor-
rectly based on their respective condition. The second 
injector which is identified as slightly damaged has also 
 

 
Figure 8. Target dataset domains corresponding Voronoi 
polygons together with threshold perimeter for OCSOM. 
The target data that are defined by the threshold are si-
tuated inside the grey border line. 
 
Table 1. Results of OCSVM based classification of injector 
condition. 

Injector 
no. # 

Actual 
condition 

OCSVM classifies 
as healthy 

(percentage) 

OCSVM classifies 
as outlier 

(percentage) 

1 Healthy 99.74 0.26 

2 Slight damage 48.95 51.05 

3 Damaged 1.32 98.68 

4 Damaged 8.16 91.84 

5 Damaged 10.09 89.91 

6 Damaged 2.63 97.37 

7 Damaged 1.75 98.25 

(New) 8 Healthy 96.75 3.25 

 

 
Figure 9. Ordering of the features as presented to the classifiers. 
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been considered as midway to damage which is accurate 
according to the expert opinion based on the sound emis-
sion from that injector. 

In a second step, an (OCSOM) was utilized for fuel- 
injectors classification to a target class corresponding to 
healthy fuel-injectors. Moreover it was also used for de-
tecting outliers indicating fuel-injectors that belong to a 
malfunctioned condition. As target class, features be-
longing to fuel-injector 1 have been used. All other fuel- 
injectors have been used aiming to test the performance 
of the OCSOM. The OCSOM was calibrated by separat-
ing the data to 75% training of the target set containing 
only healthy bearing instances and 25% testing sets has 
resulted in 100% correct classification for the target class 
of fuel-injector 1 and 99.65% (97.89% without using the 
feature of the line integral) when using fuel-injector 7 as 
outlier class for testing. These were results for an OC-
SOM of 100 neurons (arranged in a 10 × 10 grid) which 
gave the best results by testing different sizes between 5 
and 25. Further testing of the obtained OCSOM classifier 
was performed using all available fuel-injectors. Results 
are presented in Table 2. It is easily understood that all 
fuel-injectors have been identified efficiently according 
to their respective condition. The slightly damaged 
second fuel-injector has also been identified as midway 
to damage which is accurate according to the expert opi-
nion based on the sound emission from that fuel-injector. 

From the fuel injector analysis, with OCSVM and OC- 
SOM classifiers, it was obvious that, the recorded sound 
waveforms were not indicative of completely healthy 
injectors even in new tractors. By this way the sensitivity 
of fuel injectors and the importance of monitoring their 
health status are shown. Even from a first visual exami-
nation it was evident that the injectors of the Zetor 7711 
tractor were not intact and they would need cleaning. 

One of the injectors of New Holland TN65N exhibited 
similar symptoms. However, visual inspection necessi- 

 
Table 2. Results of OCSOM based classification of fuel-in- 
jector health condition. 

Injector 
no. # 

Actual 
condition 

OCSOM classifies as 
healthy (percentage) 

OCSOM classifies as 
outlier (damaged) 

1 Healthy 99.21 0.79 

2 Slight damage 27.02 72.98 

3 Damaged 1.75 98.25 

4 Damaged 6.49 93.51 

5 Damaged 9.65 90.35 

6 Damaged 2.81 97.19 

7 Damaged 1.32 98.68 

(New) 8 Healthy 95.44 4.56 

tates the presence of an experienced human to inspect the 
waveforms. Furthermore, the application of signal pro- 
cessing and artificial neural networks enabled the quanti-
fication of fault incidence with a high accuracy level. 

Due to the specific nature of the problem, reliance 
solely on acoustic signatures from intact injectors, one- 
class classification has been utilised. An OCSVM has 
been used and has given very hopeful results. Further-
more, it was possible to determine correctly the health 
state of all the injectors classified by the One-Class OC- 
SVM. This result indicates that OCSVM is a robust clas-
sifier able to detect injector malfunction with high accu-
racy. Furthermore, an OCSOM has been used with pro- 
mising results and in a similar way to the OCSVM it was 
possible to identify correctly the health condition of all 
the fuel-injectors presented to the OCSOM. This result 
indicates that OCSOM can be characterized as a robust 
classifier able to detect fuel-injector malfunction in a 
more precise way. A possible enhancement of OCSOM 
could be the outcome of definition of context sensitive 
thresholds. Another approach would include activation 
profiles implemented as a kernel map able to indicate 
novelty through interpreting neuron activity bursts. 

5. Conclusion 
The objective of the current work was the diagnosis of 
fuel injector malfunction in different agricultural tractors 
by making use of acoustic analysis and signal processing. 
From the presented results, the conclusion was that cer-
tain techniques that are currently used in industrial con-
dition monitoring are easily adaptable for use in agricul-
tural vehicle engine monitoring. The presented original 
fault detection system can be utilized for the automatic 
detection of damaged fuel injectors in agricultural trac-
tors. The presented novelty detection methods can be 
used in other applications where condition monitoring 
and novelty detection are needed, such as process control, 
network security and sensor networks in various moni-
toring applications. A future plan includes an extension 
of the current work by including more experimental data, 
different types of features (frequency domain, wavelets 
etc.) and fault types for various types of fuel-injectors in 
different diesel engines. 

REFERENCES 
[1] A. Albarbar, F. Gu, A. D. Ball and A. Starr, “Acoustic 

Monitoring of Engine Fuel Injection Based on Adaptive 
Filtering Techniques,” Applied Acoustics, Vol. 71, No. 12, 
2010, pp. 1132-1141. 
http://dx.doi.org/10.1016/j.apacoust.2010.07.001 

[2] F. Elamin, F. Gu and A. Ball, “Diesel Engine Injector 
Faults Detection Using Acoustic Emissions Technique,” 
Modern Applied Science, Vol. 4, No. 9, 2010, pp. 3-13.  

[3] S. Zahi, J. Ragot and F. Kratz, “Structured Hypothesis 

OPEN ACCESS                                                                                        MME 

http://dx.doi.org/10.1016/j.apacoust.2010.07.001


D. MOSHOU  ET  AL. 27 

Tests Based Diagnosis: Application to a Common Rail 
Diesel Injection System,” Advances in Vehicle Control 
and Safety, Genova, 2004. 

[4] T. R. Lin, A. C. C. Tan and J. Mathew, “Condition Mon- 
itoring and Diagnosis of Injector Faults in a Diesel En-
gine Using In-Cylinder Pressure and Acoustic Emission 
Techniques,” 14th Asia Pacific Vibration Conference 
APVC 2011, The Hong Kong Polytechnic University, 5-8 
December 2011. 

[5] F. Elamin, Y. Fan and F. Gu, “Andrew Ball Detection of 
Diesel Engine Injector Faults Using Acoustic Emissions,” 
COMADEM 2010: Advances in Maintenance and Condi-
tion Diagnosis Technologies towards Sustainable Society, 
Nara, 28 June-2 July 2010.  

[6] L. Jianmin, S. Yupeng, Z. Xiaoming, X. Shiyong and D. 
Lijun, “Fuel Injection System Fault Diagnosis Based on 
Cylinder Head Vibration Signal,” Procedia Engineering, 
Vol. 16, 2011, pp. 218-223.  
http://dx.doi.org/10.1016/j.proeng.2011.08.1075 

[7] A. Albarbar, F. Gu and A. D. Ball, “Diesel Engine Fuel 
Injection Monitoring Using Acoustic Measurements and 
Independent Component Analysis,” Measurement, Vol. 
43, No. 10, 2010, pp. 1376-1386.  
http://dx.doi.org/10.1016/j.measurement.2010.08.003 

[8] V. Crupi, E. Guglielmino and G. Millazo, “Neural-Net- 
work-Based System for Novel Fault Detection in Rotating 
Machinery,” Journal of Vibration and Control, Vol. 10, 
No. 8, 2004, pp. 1137-1150.  
http://dx.doi.org/10.1177/1077546304043543 

[9] SPM Instrument  
http://www.spminstrument.se/en/Products/Portable-instru
ments/BearingChecker/ 

[10] Y. Lei, Z. He and Y. Zi, “A New Approach to Intelligent 
Fault Diagnosis of Rotating Machinery,” Expert Systems 
with Applications, Vol. 35, 2008, pp. 1593-1600.  
http://dx.doi.org/10.1016/j.eswa.2007.08.072 

[11] D. Moshou, D. Kateris, I. Gravalos, S. Loutridis, N. Sa-
walhi, Th. Gialamas, P. Xyradakis and Z. Tsiropoulos, 
“Determination of Fault Topology in Mechanical Sub- 
systems of Agricultural Machinery Based on Feature Fu- 
sion and Neural Networks,” 4th International Conference 
TAE 2010, Czech University of Life Sciences Prague, 
2010, pp. 448-453. 

[12] B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola and R. 
Williamson, “Estimating the Support of a High Dimen-
sional Distribution,” Neural Computation, Vol. 13, No. 7, 
2001, pp. 1443-1472.  
http://dx.doi.org/10.1162/089976601750264965 

[13] A. Ypma, “Learning Methods for Machine Vibration 
Analysis and Health Monitoring,” Ph.D. Dissertation, 
Delft University of Technology, Delft, 2001. 

[14] R. Saunders and J. S. Gero, “A Curious Design Agent: A 
Computational Model of Novelty-Seeking Behaviour in 
Design,” Proceedings of the 6th Conference on Computer 
Aided Architectural Design Research in Asia (CAADRIA 
2001), Sydney, 19-21 April 2001, pp. 345-350.  
 

 

OPEN ACCESS                                                                                        MME 

http://dx.doi.org/10.1016/j.proeng.2011.08.1075
http://dx.doi.org/10.1016/j.measurement.2010.08.003
http://dx.doi.org/10.1177/1077546304043543
http://www.spminstrument.se/en/Products/Portable-instruments/BearingChecker/
http://www.spminstrument.se/en/Products/Portable-instruments/BearingChecker/
http://dx.doi.org/10.1016/j.eswa.2007.08.072
http://dx.doi.org/10.1162/089976601750264965

