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ABSTRACT 

An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic 
anisotropic elastic plane was analyzed, and the crack extension should occur in the format of self-similarity. When the 
fiber strength is over its maximum tensile stress, the fiber breaks. By means of complex variable functions, the problem 
considered can be easily translated into Reimann-Hilbert mixed boundary value problem. Utilizing the built dynamic 
model of bridging fiber pull-out in unidirectional composite materials, analytical solutions of the displacements, stresses 
and stress intensity factors under the action of increasing loads Pt5/x5, Px5/t4 are obtained, respectively. After those ana-
lytical solutions were used by superposition theorem, the solutions to arbitrary complex problems were acquired. 
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1. Introduction 

It is well known that the matrix cracking as well as frac- 
ture process of the bridging fibers is one of the signifi- 
cant mechanisms of the cracking expansion in fiberrein- 
forced composite materials, such as unidirectional fiber- 
reinforced brittle matrix composites [1,2], and threedi- 
mensional fiber-reinforced composites with an ortho- 
gonal fiber structure [3]. Literature [4] proposed an ap- 
proach for the assessment of the distribution of the trac- 
tion force for a crack with bridging fibers in an infinite, 
orthotropic elastic plane under a uniform remove tension 
stress. Most researchers, such as Woo, Lee and Tsai [5-7] 
etc, almost investigated static problems of composite ma- 
terials; moreover, they obtained only numerical solutions. 
Literature [8] set up a model of bridging fiber pull-out, 
but it also acquired the numerical solutions under the sta- 
tic conditions. It is indispensable to consider the mecha- 
nical analysis of matrix cracking with bridging fibers, so 
as to evaluate the distribution of the axis traction force in 
each fiber. However, the fractures of composite materials 
often arise in dynamic conditions, so accordingly it is ex- 
tremely important to research their fracture dynamics 
problems. In an orthotrpic medium, elastodynamics crack  

problems were studied and closed solutions were also 
gained, but bridging fiber pull-out problems weren’t 
dealt with in literatures [9,10]. Bridging fiber pull-out is 
very complicated and cockamamie in dynamic fracture 
process of composite materials, so a lot of difficulty must 
be overcome in studying dynamic crack expansion prob- 
lems on bridging fiber pull-out of composite materials. 
When composite materials occur in a crack, bridging 
fiber pull-out often exists ahead of the crack tips, and this 
is a frequent phenomenon.  

Because the fiber failure is governed by maximum ten- 
sile stress, which appears at the crack plane, the fiber 
breaks and hence the crack propagation should occur in a 
self-similar fashion. The fiber breaks along a transverse 
line and therefore present a notch [8,11-12]. When a 
crack runs at higher velocity, bridging fiber pull-out still 
exists in the dynamic case of composite materials, which 
are more important than those in the statics.  

The problem under consideration is that of a crack, 
moving in one plane, presumed to nucleate from an in- 
finitesimally small micro-crack with maximum velocity 
from the start. This modality of symmetrical crack, run- 
ning with constant velocity  in both the positive and 
negative directions of the x-axis, has been researched by 
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Broberg [13] and Craggs [14]. Both considered motions 
in materials postulated to be homogeneous and isotropic, 
as regards stress-strain relationships and fracturing char- 
acters. If the fiber failure is governed by maximum ten- 
sile stress, which appears at the crack plane, the fiber 
breaks and hence the crack expansion should occur in the 
modality of self-similarity [13,14]. The fiber breaks 
along a transverse line and therefore presents a notch [7, 
11-12]. When a crack runs at higher speed, bridging fi- 
bers still exist in the dynamic situation of composite ma- 
terials, which are more significant than those in the stat- 
ics. Since bridging fibers can result in stabilizing effect 
of crack extension problem along the original notch 
plane, the dynamic fracture influence on bridging fibers 
of composite materials will be shown in detail; at the 
same time, stresses and displacements as well as stress 
intensity factors are deduced properly.  

In this paper, the dynamic expansion problem on an 
internal central crack with bridging fibers of composite 
materials is analyzed by the ways of Keldysh-Sedov 
mixed boundary value problem, and analytical solutions 
for unidirectional reinforced material with fibers parallel 
to the free surface are shown. First, the solution of a sole 
dislocation in an elastically half-plane is derived from the 
uses of complex variable analysis. The crack is then dis- 
played in terms of a consecutive distribution of disloca- 
tion. This solution which has relation to a bridging fiber 
force induces a system of self-similar functions with dis- 
location density as unknown quantities. Then self-similar 
functions are resolved analytically by means of Keldysh- 
Sedov’s method. 

2. A Dynamic Model of Bridging Fiber 
Pull-out of Composite Materials 

When fiber-reinforced composite materials occur a crack, 
phenomenon of bridging fiber pull-out will often occur 
ahead of the crack tips and off x-axis on occasion, and 
analyzing crack problems in this situation is more diffi- 
cult. Composite materials are often referred to as ortho- 
tropic aniostropic body in virtue of the direction of their 
fibers, while bridging fibers play an important role in 
their strength, consequently queries on bridging fiber 
pull-out are one of the most complex advancing tasks in 
mechanics of composite materials. When a crack moves 
with high speed, bridging fiber pull-out phenomenon of 
composite materials is still likely to exist. Because the 
problems of bridging fibers are more complicated and 
cockamamie, there is a lot of difficulty in mathematical 
calculations. In order to resolve dynamic fracture queries 
of bridging fiber pull-out of unidirectional composite 
materials, it is indispensable to establish a suitable sym- 
metrical dynamic model of bridging fiber pull-out, hence 
fracture dynamics problems of bridging fiber pull-out of 
composite materials are effectively solved. 

2.1. Characterization of Dynamic Fracture  
Problems Concerning Bridging Fiber 
Pull-Out 

The problem of an internal central crack with bridging 
fiber pull-out of composite materials is analyzed under 
the dynamic conditions by means of Reimann-Hilbert 
mixed boundary value, and that analytical solutions for 
unidirectionally reinforced composite materials with bri- 
dging fibers parallel to the free surface are presented. 
This solution in conjunction with a bridging fiber force 
gives rise to a system of self-similar functions with dis- 
location density as unknown units. The self-similar func- 
tions are solved analytically using Reimann-Hilbert me- 
thod. In order to settle efficaciously fracture problems on 
bridging fibers of composite materials, it is inevitable to 
establish dynamic models of bridging fibers. Since 
bridging fibers can conduce a stabilizing effect on crack 
extension problems along the original notch plane, the 
dynamic fracture effect of bridging fiber pull-out in com- 
posite materials will be shown, at the same time, stresses 
and displacements as well as stress intensity factors are 
deduced appropriately. In order to resolve efficiently 
fracture problems of bridging fiber pull-out of composite 
materials, proper dynamic models of bridging fiber pull- 
out must be built. Only this approach, can a dynamic 
crack expansion problem of bridging fiber pull-out of 
composite materials obtain content solutions. 

2.2. Base of A Dynamic model of Bridging Fibers  

The crack is postulated to nucleate an infinitesimally 
small micro-crack situated along the x-axis in the form of 
self-similarity with the high speed extension, and to run 
symmetrically in the positive and negative x directions 
with the constant crack tip velocity V in the matrix. 
Bridging fiber pull-out of composite materials discussed 
is modeled as a two-dimensional region, having a sole 
row of parallel, same, equally spaced fibers, separated by 
matrix [15,16]. Initial breaks originate from an arbitrary 
number broken fibers leading to the fiber breaks along a 
transverse line and therefore present a notch. Further- 
more, an arbitrary number of self-similar (off-axis) fiber 
breaks, i.e. fiber pull-out, with symmetry at the origin of 
coordinates and along a transverse line are also consid- 
ered. A schematic of a dynamic model of bridging fiber 
pull-out configuration is described in Figure 1. Since the 
configuration in Figure 1 is symmetry both in geometry 
and loading, respectively, with respective to y-axis, only 
the right half-plane of the zone needs to be considered 
for analyses. The fibers and the matrix are taken to be 
linearly elastic. It is further presumed that the fibers have 
a much higher elastic modulus in the axial direction than 
the matrix and therefore the fibers are usually taken as 
supporting all of the axial loadings in composite materi-  
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Figure 1. Schematic of a dynamic model of bridging fiber 
pull-out configuration. 
 
als. Load is transferred between adjacent fibers through 
the matrix by a straightforward shear mechanism [15,16]. 
The shear stresses are independent of transverse displa- 
cements and the equilibrium equation in the fiber direc- 
tion reduces to an equation in the longitudinal displace- 
ments alone, as is a typical of shear-lag theory [11,12]. 
The solution approaches and modeling procedure put 
forward by [11] will be utilized, which discussed static 
problems, the fiber fractures in turns occur along two 
sole planes, i.e. the fiber fracture was self-similar fiber 
(off-axis) break. By virtue of the point, break lie is same 
in geometry off x-axis, i.e. break is symmetry about the 
origin of the coordinate. In short, the fiber fracture was 
self-similar fiber (off-axis) break and presented a notch. 
Bridging fiber pull-out occur ahead of the crack tips and 
off x-axis. Bridging fibers do not break in the area of the 
crack tips along the crack plane, but the others fracture 
off the further of the crack tips, i.e. at the central section 
of crack or notch. When the crack runs, fibers continu- 
ously break with the constant velocity α according to my 
assumption. As shown in Figure 1, at y = 0, the realm of 
crack or notch in matrix is x Vt ; and the fibers broke 
at the extent of x t ; while the zone of bridging fi- 
bers is t x Vt   , respectively [15,16]. At y ≠ 0, the 
bridging pull-out positions locate at |x| > Vt [8].  

Evidently, the dynamic model of crack extension pro- 
blem with bridging fiber pull-out in Figure 1 is clarified 
by that in Figure 2. This is a model of symmetrical crack 
propagation, running with constant velocity V in both the 
positive and negative directions of x-axis, at the same 
time, bridging fibers fracture with constant velocity α. 
The area of bridging fibers has the symmetrical state with 
respect to y-axis [15,16]. Each bridging fiber is replaced 
by a pair of vertical traction forces which act at the points 
with the same x-coordinate on the upper and lower crack 
surfaces, but in an opposite direction. Each bridging fiber 
is postulated to be balanced with the fracture load of a 
fiber from the matrix. The present model has the symme-
tries of geometrical and mechanical conditions with re-
spect to the x- and y-axes on account of the symmetrical  

y

x

t
Vt

t
Vt

 

Figure 2. Dynamic model of crack-face bridging fiber zone. 
 
crack expansion. At y = 0, traction forces act in the zone 
of t x Vt   , which represent fibrous tensile stresses 
which don’t act in the rest of the crack [15,16]. Bridging 
fibers of composite materials are usually arranged tightly, 
separated by matrix, therefore bridging fiber traction 
forces are presumed to be distributed consecutively. At y 
= 0, t x Vt   , bridging fiber pull-out has symmetry 
with respective to the origin of the coordinate; the dis- 
placements of the crack face are not the same, but trac- 
tion forces of bridging fibers are identical [15-17]. In 
short, traction forces of bridging fibers are homogenous 
in this section, whose magnitude is P assumed. On the 
other hand, when the crack extends with high speed, the 
magnitude of crack will increase with time t; the longer 
the crack spreads, the more fibers break. The above 
analyses are postulated that fibers in matrix are distrib- 
uted uniformly, and each fiber has the identical strength, 
moreover, the fracture fibers and matrix simultaneity 
occur in the same segment of the crack expansion plane 
[7,15-17]. It is distinct that traction forces are larger near 
the points of ± αt, and they are smaller close to the points 
of ± Vt. When the crack runs at high speed, its dimension 
has relation to the parameters x and t, and the surfaces of 
the crack subjected to loads must also be related to x and 
t. When the fracture occurs, both the fiber and the matrix 
are in the same plane of crack expansion [15-17]. Of 
course, this is an assumed model which maybe not coin- 
cident with that in practicality. We can reasonably inter- 
pret this to mean that, outside the crack or notch, condi- 
tions are steady-state because the crack had no effect it, 
after all we can only expect the crack to affect apprecia- 
bly the part of the body which lies in a certain proximity 
to it. 

3. Universal Expressions of Electrodynamics 
Equations for Orthotropic Anisotropy 

In order to solve efficaciously fracture dynamics queries 
of bridging fibers of composite materials, solutions will 
be attained under the action of point forces for mode I 
motive crack. In terms of the theorem of generalized 
functions, the problems dealt with unlike boundary con- 
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ditions will be facilely translated into Reimann-Hilbert 
mixed boundary value problem by means of self-similar 
functions, then correlative solutions will be obtained.  

Postulate at y = 0 that there are any number of loaded 
sections and displacement sections along the x-axis, and 
the ends of these segments are running with unlike con- 
stant velocity. At t = 0, the half-plane is at rest. In these 
sections the loads and displacements are discretionary 
linear compages of the following functions [15-22]: 

   
1 1

d d
k s

k s

d dk sf x f t

x t
               (1) 

Where              (2) 

Here k, k1 and s, s1 are discretionary integer positive 
nu

ccessive function of two variables x 
an

 
0 0

0
i i

f



 


 


 

mbers [15-22].  
A discretional su
d t may be shown as a linear superposition of Equation 

(1), therefore resolving loads or displacements with the 
form of Equation (2) will possess significance in princ- 
ple. Introduce the linear differential operator as well as 
inverse: 

m n

m n
L

x t



 

, inverse: 
m n

m n
L

x t

 


 



 

       (3) 

Here +m +n, m n and 0 represent the (m + n) th or- 
de

namics equation 
of

 

r derivative, the (m + n) th order integral and func- 
tion’s self. It is facile to prove that there exist constants 
m and n, when L is put into Equations (1), (2), homoge- 
neous functions of x and t of zeroth dimension (homoge- 
neous) are gained. The coefficients m, n will be called 
the indices of self-similarity [15-22].  

Using relative expressions of elastody
 motion for an orthotropic anisotropic body [15-22]: 
For the case when function Lv is homogeneous [5,6]:

0 0, y yv Lv L                 (4) 

For the case when function Lσy is homogeneous: 
0 0, y yv Lv t L t               (5) 

The relative self-similar functions are as [15-23]: 

     0 0Re , 1 Rev W t Fy          (6) 

Where: v0 and 0
y  

23]
in Equations (4)-(6) ar

tio
e the nota- 

n in [15-17,20- , and they are relevant variables τ 
and t which directly work out displacements and stresses 
by the course of respective calculations in Equation (7).  

        W D D F1                 (7) 

Where: τ x/t, F(τ), W(τ) are self-sim
Th

D1(τ)/D(τ) in the neighborhood of the subsonic speeds is 

ic body. Assume at the ini- 
tia

mat of the Solution of 
Symmetrical Dynamic Extension Query 

At o 
ap t the Cartesian co- 

 = ilar functions. 
e values of D1(τ)/D(τ) can be ascertained from Appen- 

dix 1 of literatures [15-17,20-22], indicated here are only: 

purely imaginary for the considered values. Thus, elas- 
todynamics problems for an orthotropic anisotropic body 
studied can be changed into seeking the sole unknown 
function problems of F(τ) and W(τ) for which must meet 
the boundary-value conditions. In the universal situation 
this is Riemann-Hilbert problem in the theory of complex 
functions (in the simplest cases we have Keldysh-Sedov 
or Dirchlet problem), this kind of problem is facilely set- 
tled by the usual approaches, for example, in the books 
by Muskhelishvili [24,25].  

Fracture dynamics problems will be investigated for an 
infinite orthotropic anisotrop

l moment t = 0 a crack occurs at the origin of coordi- 
nates and begins spreading at constant velocity V (for the 
subsonic velocities) along the positive direction of x-axis; 
and at t < 0, the half-plane was at rest. The surfaces of 
the crack are subjected to the unlike types of loads under 
the plane strain states.  

4. Fundamental For

Concerning Mode I Crack 

 the initial moment t = 0, a micro-crack is supposed t
pear in an orthotropic anisotropy. Le

ordinate axes align with the axes of elastic symmetry of 
the body. The problem considered is restricted to motion 
in the x-y-plane. The crack is moving symmetrically with 
constant velocity V along the positive and negative direc- 
tions of x-axis respectively. The problems will be chang- 
ed into the following boundary condition queries: 

   
 

1,0, , ,y

,0, 0,

x t f x t x Vt

v x t x Vt

 
         

 
   (8) 

Introducing the variable τ = x/t. By m
correlative expressions and 

eans of the above 
   t x x t   in the the-

or
  

y of generalized functions [26-28], the boundary con-
ditions can be transformed as:

   
 

2Re , ,

Re 0,

F f V    

W V 

   
  

          (9) 

In the light of the relationship of F
Equation (7) and the previous conditions, the format of 
so

(τ) and W(τ) in 

le unbeknown function W′(τ) can be confirmed:  

   3 ,W f                     (10) 

The problems can reduce to Keldysh-Sedov problem: 

 
 

Re 0, ;

Im 0,

V

V

  

  

 

 
             (11) 

Considering symmetry and the 
plane corresponding to the origin of coordinates of the 
ph

infinite point of the 

ysical plane as well as singularities of the stress at the 
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crack tip [29,30], the solution in the above problems can 
be readily deducted by literatures [15-16,20] as:  

     ,T V V                 (12) 

Using Equations (6) or (7), we will e
stress, the displacement and the stress int
un

s with 
e mate-

 spread at constant 
ve

asily obtain the 
ensity factor 

der the conditions of mode I crack extension problems. 

5. The Solutions of Practical Problems 

In order to solve symmetrical dynamics problem
bridging fiber pull-out of unidirectional composit
rials, solutions will be found under the conditions of dif-
ferent loads for mode I expanding crack. According to 
the theorem of generalized functions, the unlike bound-
ary condition problems investigated will be translated 
into Keldysh-Sedov mixed boundary value problem by 
the approaches of self-similar functions, and the corre-
sponding solutions will be acquired.  

1) Suppose at the initial moment t = 0 a crack occurs 
at the coordinate origin and begins to

locity V in both directions along the x-axis. The edges 
of the crack are subjected to normal point force Pt5/x5, 
moving at a constant velocity β along the positive direc-
tion of x-axis, where β < V; at t < 0 the half-plane was at 
rest. The boundary conditions will be as follows: 

   
 

5 5,0, ,y

,0, 0,

x t Pt x x t x Vt      
 

v x t x Vt 
  (13) 

In this case the displacement will distinctly b
geneous functions, in which L = 1. Using τ = x/t and the 
th

e homo-

eory of generalized functions [26-28] and Equations (4) 
and (6), the first of Equation (13) can be as:  

   
 

5 5

5

Re F Pt x t x t  


   
  

P V       
      (14) 

In the light of Equation (7), boundary c
will be further rewritten: 

onditions (14) 

   
   

 

5

1

Re
D

W



 

   ,

Re 0,

P V
D

W V

    


 

   
  

    

  (15) 

Deducting from the above-mentioned formulae, the 
unique solution of W′(τ) must have the modality: 

     5W                     (16) 

ξ(τ) has no singularity in the domain
D1(τ)/D(τ) is purely imaginary for the s
co

 of |τ| < V, while 
ubsonic speeds, 

nsequently ξ(τ) must be purely real in this segment. 
Thus, question (15) can conduce the following problems: 

 
 

Re 0, ;V   
             (17) 

Im 0, V   

According to symmetry and the con
nite point of the plane correspondin
ordinates  

ditions of the infi-
g to the origin of co-

of the physical plane as well as singularities of
the stress of the crack tip [29,30], the sole solution of the 
Keldysh-Sedov problem (17) under the given conditions 
must have the following modality: 

    1 22 2A V  


              (18) 

where A is an unknown constant. 
Inserting Equation (18) into (16), (7), one can gain: 

    1 25W A V    2 2           (19)   

     
 

1

5 2

A D D
F

V 2

 

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


 
   

Then putting Equation (20) into (14),
A can be determined from that 

       (20) 

 at τ→β, constant 

    2 2
1ImA P V D D              (21) 

Putting Equation (20) into (6) and (4), at the surface y 
= 0, the stress σy, the displacement v and the s
sity factor 

tress inten-
K1(t) are acquired, respectively: 

 
   5 2 2 2

1

Im ,y

D A
x Vt

D x V t



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 
   

    
 (22) 

 
 

 
 1 11 2

1

Im
D VA

K t
t DV V 


    
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V


   

Replacing Equation (19) into (4), (6), after 
with respective to τ one can obtain the displace

 (23) 

integrating 
ment v: 

 

4 3 2 2 3 4

1 1 1 1
Re

x tA
v



5 4 2 2

1 1 1
d

V

      


     





    


  

  

   (24) 

Utilizing correlative integral formulas [31] to yield: 

2 2

2 2
d ln

VV

1 1 V V 
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


        (2
 

5) 

2 2

22 2 2

1
d

V

VV


 


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
         (26) 

2 2 2 2V
2 2 33 2 2

1 1
d ln

2 2

V V

V VV

 
 
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    




(27) 

4 2 2

2 3 42 2

2
d

3 3

V V

V VV

2 2  


  
  


  


    (28) 
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2 2

55 2 2

2 2 2 2

2 4 4 2

1 3
d ln

8

1 3

4 8

V V

VV

V V

V V


 

 
 

 




 
 


      (29) 

 

  
 

2 2

2 2 2 2

2 2

1
d

1
ln

V

V V V

VV


  

2 

 

 

   







 (30) 

The crack extends along the x-axis, therefore W(τ) can 
be worked out in the operation of the definite integral, we 
take constant C = 0. Then putting Equations (25)-(30) 
into (24), the displacement v  is given as follows: 

  
 

2 2 2

4 4 2 4

1 1 3
ln

2 8

A Vt V t x
v

V xV V  
   

   
 

2 2 2 2 2 2

4 2 2

2 3

2 2 2 2 2 3 2

2 2 2

ln

1 2 3

2 3 3 4 8

,

V t x V V t xA

V t xV

A t t t t

xV x V x V x

V t x
x Vt

x

 

 

 
 

   




       





(31) 

By means of the solution of Equation (31), the bridg-
ing fiber fracture speed α can be readily attained as: 

  
 

2 2

4 4 2 4

1 1 3
ln

2 8

A V V

V V V


  

   
   

 

2 2 2 2 2

4 2 2

2 2 2 2 2 3 2

2 2

ln

1 1 1 2 3

2 3 3 4 8

,

v

V V VA

VV

A

V V V

V
x t

  

  

 
    

 


   




       





 

(32) 

Each fibre has same strength [15-17,20-22] accord-
ing to assumption, hence the bridging fiber fracture 
strength must be equal. Where Δ can be ascertaine
an

 in the format of explicit function. 

 will 
be

d by 
 axial tensile test of bridging fibers of composite 

materials with V and ß regarded as known constants, 
respectively.  

In terms of this approach, the bridging fiber fracture 
speed α can be only gained numerical solution, because it 

can not be shown
2) With all conditions remaining the same as those in 

the above sample, the applied loads become variable 
loads Px5/t4. The boundary conditions of the problem

 as follows: 

   
 

5 4,0, ,

,0,

y

0,

x t Px t x t x Vt

v x t

  

x Vt

    
   (33) 

 

In this case the stresses are apparently homo
functions, in which L = 1, making use of the t
generalized functions [26-28] and Equations (5) and (6), 
th

geneous 
heory of 

e first of the boundary conditions (33) can be rewritten 
in the following modality: 

     
 

5 5

5

Re 4

4

F Px t t x t

P V

  

  

    

   

Owing to the derivative of Dirac’s funct
zero at x ≠ βt, the above expression will be d

In terms of Equation (7), boundary conditions (33) will 
be

       (34) 

ion equaling 
educted. 

 further rewritten: 

   
   5

1

Re 4 ,
D

W P V
D


     


 



 Re 0,W V 

    
 

    

  (35) 

Known from the above, the sole solution of W′(τ) is: 

     5W                     (36) 

D1(τ)/D(τ) is purely imaginary for the s
ξ(τ) must be purely real in this area. T
w

ξ(τ) has no singularity in the domain of |τ| < V, while 
ubsonic speeds, so 
hus, question (36) 

ill be the following boundary value problems: 

 
 

Re 0, ;

Im 0,

V

V

  

  

 

 
             (37) 

In the light of the symmetrical con
larities of the stress as well as the 
plane corresponding to the coordinate origin of the phy- 
si

ditions and singu-
infinite point of the 

cal plane, the sole solution of Keldysh-Sedov problem 
(37) takes the format: 

    3 22 2A V  


              (38) 

where A is an unknown constant. 
Putting Equation (38) into (37), (7), one can attain: 

    3 25 2W A V    2            (39)  

     
  

5
1

3 22 2

A D D
F

V

  


  

 


 
    

Putting Equation (40) into (35), we have the result: 

        (40) 
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 
    

 

5

3 22 2
1

54P 

Re

Re ,

D A

D V

i V

 
   


 

 
 
    

  
   

         (41) 

At τ→β, constant A can be determined from that: 

 
   

3 22 2

1

4

Im

P V
A

D D



 



   

          (42) 

nge 
of elastic wave can be shown by the circular area of ra-
dius c1t and c2t. Here c1 and c2 are the 
gitudinal and transverse waves (c1 > c2) o
respect

 

In an orthotropic isotropic body, the disturbance ra

velocities of lon-
f elastic body, 

ively. In an orthotropic anisotropic body, the dis-
turbance range of elastic wave is not the circular area and 

can not exceed threshold value  1 2

d 11C C   of elas-

tic body, where C11 is an elastic constant of materials. At 

dx C t , with    1Im 0D D     , thus displace- 

ments and stresses are zero with the initiate cases; and 

 

lastic wave ca

Then i Equation (40) into (

this shows that disturbance of e n not ex-
ceed Cdt.  

nserting 6) and (5), at the 
surface y = 0, the stress σy and dynamic stress intensity 
factor K1(t) are gained, respectively: 

   
  

4
1

3 22 2
Re d ,y

Imx t D D
A x Vt

V


  
   

 
  (43) 

     

   
 
 

5 2 D VAV 

1

ImK t t
V D V


     

   
       (44) 

The limit of Equation (44) belongs to the form 0·∞, 
which should be only changed into the type of ∞/∞, then 
its result can be worked out by the approach
tal theorem [31,32]. Dynamic stress intensity facto 1

slowly a

 of L’Hospi- 
r K (t) 

ugments from zero and even reaches or exceeds 
fracture toughness of this material, because unique vari-
able t lies in the numerator, and the rest are also referred 
to as real constants. 

Equation (39) can rewrite as follows  

 
  

 

5

3 22 2

A
W

V


  

 
 

5
4 3 2 2 3 4       

 
     

 
 

4

1 3 22 2

2 2
2 2

2 2

d

3
arcsin

2 2

A
W

V

A AV AV
V

VV

 


  





   



   (46) 

   
 

3

2 2 3 22 2

2

d d
A

W W
V



2 2

2 2

A V
A V

V

    


 


 
    (47) 

 


  


   
 

2
2

3 3 3 22 2

2

2 2

d d

arcsin

A
W W

V

A
VV

    


 


 


 
  

 

 
    (48) 

 
 

3
3

4 3 2 2 22 2
d

A A
W

VV

   


 


      (49) 

 
 

4
4

5 3 2 2 2 22 2
d

A A
W

V VV

   


 


    (50) 

Denominator in Equation (45) contains this term  

  3 22 2V    , calculation will not be preformed in  

the light of integral formulae, therefore integral format 
must be translated into integral which can be fu

For the sake of convenience, we assume: 
lfilled.  

2 2X V    
By variable replacement: 1    , th

be rewritten as follows: 
2

is term X can 

2 2 2 2
1 12X V V                (51) 

[31] is: 
Known from it, the following relationship in literature 

2 2
1a V   , 1 2b   , 1c   ,  

22
1 14 4D a c b V    . 

Integrating the sixth term of Equation (45) in terms of 
relevant formulae in literature [31], we will gain W (τ): 6

 
 

5 5 1
6 3 2 3 2

ddA
W

 
 

 
 1

5
1 1

25
1 1 1

1 1

1 1

d d1

2 2

ln
2

A
X X

bA

b bA

C
a a








 

3 22 2

A

V  


  

(45) 

Integrating Equation (45), one will attain W(τ). But it 
has six items, separate denotation is more convenient, 
Integral formulas are used in literature [31], now assume: 

1
3 2

1 1
2a XX X

D b



 

1

1

a D X D X

X a b

 
   

  
  
 






 

  
 

 
    (52) 

Known from Equation (45):  
             1 2 3 4 5 6W W W W W W W            . 
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The crack runs along x-axis, hence W(τ) comprising 
Equations (46)-(50) and (52) can be performed in the 
definite integral operation, one takes constant C = 0. 
Known from Equation (45): 

             1 2 3 4 5 6W W W W W W W          
The crack runs along the x-axis, so W(τ) co

 . 

Equations (46)-(50) and (53) can be performed i
definite integral operation, one takes constant C = 0.  

Making use of relative integral formulas [31] to yield: 

mprising 
n the 

2 2

1
d arcsin

VV







            (53) 

2 2V 2 2
2 2d ln

V V
V V

    
     (54)

 
 



2 2 2 2

2
d arcsin

V V

V

  


 
        (55) 

Pu g Equation tttin  (46) in o (6), (5), the divisional dis-
placement v1 will be obtained as:  

2
2 2

1 2 2

1 2
Re

2

x tAx V
v V 


2

V

V
2

3
arcsin d

V

 






  (56)




 


 

Now putting Equations (54), (26) into (56), there re-
sults the divisional displacement v1: 




    

2
2 2 2

1

3
arcsin ,

2 2

Ax AV t x
v V t x x

t V
      Vt

t
 (57) 

Inserting Equations (47) into (6), (5), by m
Eq

eans of 
uations (55), (26), the displacement v2 are obtained:  

2 2 2
2 2 arcsinv A V t x x     ,

x
x Vt

Vt
 

 
    (58) 

Replacing Equations (48) into (6), (5), by applica-
tion of Equation (25), there results the sub-di
ment v3: 

splace- 

2
3 arcsin ,v A t x Vt

Vt
             (59)

Substituting Equation (49) into (6

x
 

), (5), by means of 
Equation (26) there results the sub-displacement v4 as: 

2 2
3

4 2
Re

3
2 2 2

2
,

x t

A
V t x x Vt

V



 

  

) 

V
v A x

V







    
 
           (60

Then putting Equation (50) into (6), (5), by means of 
Equation (25), there results the sub-displacement v5: 

4 2 2 2

5 3
ln ,

A x Vt V t x
v x

xV

  
    Vt     (61) 

Now substituting Equation (52) into Eq
there results the divisional displacement v

uations (6), (5), 
6 as: 

25
1 1

6 2
1

21
Re

x t D b bA x
v

a D X




1 1 1

1 1

21
ln

2

X a b b

a a D


d

X



  
 



 


  

 


  (62) 

Integral of the second term of Equation (62) without 
comprising coefficient can be written as: 

1 1

2

1
ln d

X a b

1 1

1 1

1 1

1

1

2

1 1
ln d

ln
2

d1 1 d 1 1

a a

X a b

a a

X X

1 1

1 1

2

1

a a

X a b


 

    


       (63) 


 



 


   

     

 


   



 

Using integral formulas in Literature [31], one gains: 

11 1

11 1

d 1
ln

2

X a b

1X a a




         (64) 


where: 2 2
1a V   , 1 2b   , 

. 
1c   , 

2 24 4c b   1 1D a V
Putting Equations (64), (25) into (63), the following 

representation is given as: 

1 1

2
1 1

1 1

1 1

2 2

1
ln d

2

1 1 1
ln

2

1
ln

X a b

a a

X a b

a a

V V



V

 

   




 



 
     

 




     (65) 

Inserting Equations (65), (26) into (62), the divisional 
displacement v7 will be obtained as follows: 

 

5 4 2 2 2
2 2 2

6 2 3
n

A t
v x

x


1

1 1

1 1

l

2

A x Vt V x
V t

V a V

x Vt
x ta a

 

 

 
  

2 2 25

3 2
ln

V t x t a bA x
t

   
    

 

(66) 

The displacement v is the sum of divisional displace-
ment: 1 2 3 4 5 6v v v v v v v     

ons (57)-(61) and (66), th
. The addition of 

Equati e displacement  is 
acquired as: 

v
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2 2 25
1 1

3 2
1 1

2
2

3
2 2 2

1

ln
2

3
arcsin

2

2 ,
2

V t x t a bA x
v t

x ta a

V t x
A x t

Vt

x
A V t x x Vt

a t


 

 



  
     

 
    

 
 

     
 

 (67) 

where: 2 2
1a V   , 1 2b   , 1c   , 

2 2
1 14 4D a c b V    . 

Using the similar ways as that for finding Equation 
(33), put |x| = αt into (67) while regarding V, β and t as 
known constants, respectively. Bridging fiber fracture 
speed α can be only gained numerical solution, because it 
can also not be shown in the form of explicit function. 

6. Law of Dynamic Stress Intensity Facto

In
e law of dynamic stress inte

s (23), (44) to plot K1(t) as a function of 
time t, and their numerical solutions are facilely gained. 
The following constants are as [8,17,21-22,33-36]: 

C11 = 19.24 GPa; C12 = 1.25 GPa; C11 = 17.83 GPa; P 
= 200 N; C66 = 1.00 GPa; V = 300 m/s; β = 200 m/s; ρ = 
4.9 × 1000 N/m3. 

Known from Equation (23), dynamic stress int
factor K1(t) reduces tardily and has obvious singularity 
on account of unique variable t in the denominator, and 
the rest units are regarded as real constants. Such a tend 

n Figure This variable current is similar to 
e result of Literatu ,17,21 ,33-38]. It is known 

fr

. 
7, 

r 

 the light of practical situations of concrete problems, 
mutativ nsity factor should be 
interpreted better. The corresponding parameters are put 
into Equation

ensity 

is shown i 3. 
th ,22res [8

om Equation (44) that dynamic stress intensity factor 
K1(t) increases slowly from zero and even reaches or 
overruns fracture toughness of this material, because sole 
variable t  lies in its numerator, while the rest quantities 
are also referred to as real constants. This result must 
conduce the structural instability, as shown in Figure 4
This trend is similar to the result in references [8,1
21,22,33-36,38-40], consequently it is also right. 

The relative numerical values between dynamic stress 
intensity factor K1(t) and time t are expressed in Tables 1, 
2 in terms of curves in Figures 3, 4, respectively. 

7. Conclusions 

By means of correlative expression: 
   , , ,nf x y t t f x t y t , where n is an integral number, 

the problem considered can be facilely changed into ho-
mogeneous function of x and t of zeroth dimension, i.e. 
self-similar functions. All suffice the relationship of this 
function, and thus the analytical solutions can be gained 
by Equations (4)-(7) with homogeneous function of 
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Figure 3. Dynamic stress intensity factor K1(t) versus time t. 
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Figure 4. Dynamic stress intensity factor K1(t) versus time t. 
 

Table 1. Relative numerical values between K1(t) versus t.  

t/ms 4 8 12 16 20 

K1(t) 2.9552 2.0896 1.7062 1.4776 1.3216 

 
Table 2. Relative numerical values between K1(t) versus t.  

t/ms 4 8 12 16 20 

K1(t) 1.5511 2.1936 2.6866 3.1023 3.4684 

 
variable τ. This measure can use not only in electrody-
namics [15-20,22,33-34], but also in electrostatics [24,30] 
and even in other situations, referring to literatures [30, 
41]. 

Analytical solutions of the symmetrical dynamic crack 
extension model for bridging pull-out of unidirectional 
composite materials were found by way of the theoretical 
usage of a complex variable function. The method de-
veloped in this paper based on the approaches of the self- 
similar functions makes it conceivable to obtain the con-
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crete solution of this model and bridging fiber fracture 
speed α. According to the concrete boundary conditions, 
self-similar function W(τ) can be easily deducted by 
means of corresponding to variable τ. Consequently, 
analytical solutions of stresses, displacements and dy-
namic stress intensity factors will be readily worked out. 
This is referred to as the analogous class of dynamic 
problem of the elasticity theory. However, the present 
solution occurs to be the simplest and intuitive of all al-
ternative approaches appearing by so far. Indeed, we 
have succeeded in a mixed Keldysh-Sedov boundary va- 
lue problem on a half-plane. The query is of adequate 
actual interest, since all the members of structures in 
which fractures may move are of finite dimensions
are frequently in the modality of long strips. The ways 
solution are based exclusively on techniques of analyt

l
m
the nt o he com tative rk ne o r lve
such a crack expansion query.  
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