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Abstract: In this paper, a linear Chebyshev pseudospectral method (LCPM) is proposed to solve the
nonlinear optimal control problems (OCPs) with hard terminal constraints and unspecified final time,
which uses Chebyshev collocation scheme and quasi-linearization. First, Taylor expansion around the
nonlinear differential equations of the system is used to obtain a set of linear perturbation equations.
Second, the first-order necessary conditions for OCPs with these linear equations and unspecified
terminal time are derived, which provide the successive correction formulas of control and terminal
time. Traditionally, these formulas are linear time varying and cannot be solved in an analytical
manner. Third, Lagrange interpolation, whose supporting points are orthogonal Chebyshev–Gauss–
Lobatto (CGL), is employed to discretize the resulting problem. Therefore, a series of analytical
correction formulas are successfully derived in approximating polynomial space. It should be noted
that Chebyshev approximation is close to the best polynomial approximation, and CGL points can be
solved in closed form. Finally, LCPM is applied to the air-to-ground missile guidance problem. The
simulation results show that it has high computational efficiency and convergence rate. A comparison
with the other typical OCP solvers is provided to verify the optimality of the proposed algorithm.
In addition, the results of Monte Carlo simulations are presented, which show that the proposed
algorithm has strong robustness and stability. Therefore, the proposed method has potential to be
onboard application.

Keywords: optimal control problems; linear Chebyshev pseudospectral method; unspecified terminal
time; missile guidance

1. Introduction

In the middle of 20th century, optimal control began to form and develop as a new
discipline. During these decades of development, optimal control has been gradually
applied in some engineering fields such as aerospace [1–3], transportation [4], chemical
industry [5] and so on. Among them, aerospace is one of the most widely used fields
of optimal control. In fact, many problems in aerospace engineering can be regarded as
optimal control problems (OCPs) with unspecified final time, which have attracted much
attention. The particularity of this kind of problem is that the control and final time are
highly coupled, and they need to be solved with high accuracy. For instance, satellite
orbit transfer, launch vehicle boost phase guidance and missile terminal guidance can be
regarded as OCPs with free final time. Therefore, it is necessary and meaningful to develop
an efficient method to address them.

In recent years, many scholars have studied the pseudospectral methods for solving
nonlinear OCPs [6–12]. For pseudospectral method, the state and control variables need
to be approximated by interpolation polynomials and derivative terms are represented
by numerical differentiation. Thus, the dynamic equations can be formulated to a set of
algebraic equations on discrete nodes. Therefore, a continuous OCP can be transformed into
a nonlinear programming (NLP) problem. Pseudospectral methods are usually separated
into Chebyshev, Legendre, Gauss and Radau pseudospectral methods according to discrete
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nodes [13–17]. In essence, the pseudospectral method is a direct method. However, highly
accurate costate can be approximated. Meanwhile, the first-order necessary conditions
(KKT conditions) of NLP that are obtained by the pseudospectral method are equivalent
to that of OCPs. Therefore, its optimality has theoretical justification. Unfortunately,
the pseudospectral methods require third-party NLP solvers, which occupies a large
amount of memory and computational resources. In addition, if the initial value is bad,
the convergence rate of the algorithm will be slow. Therefore, pseudospectral methods are
usually used for off-line optimization [18–20].

To implement onboard, some scholars aim to improve the computational efficiency
of optimal control algorithms and make their code as simple as possible. In [21], an
optimization algorithm named model predictive static programming (MPSP) is proposed.
This method solves OCPs with terminal constraints and fixed final time. This method
has been used in several practical problems [22,23]. Then, Maity et al. extended MPSP to
solve the free final time problems [24,25]. In addition, QS-MPSP developed on the basis of
MPSP is an improved method [26–28]. In [29], a model predictive control method LGPMPC
based on the pseudospectral method is proposed. This method is also used to deal with
the OCPs with fixed terminal time. This method combines the idea of quasi-linearization
and pseudospectral method, so that the solution procedure no longer depends on the third-
party NLP solvers. Additionally, compared with MPSP, LGPMPC has higher computational
efficiency. Therefore, this method is suitable for online optimization. So far, LGPMPC has
made further development. For instance, an entry guidance method based on LGPMPC is
proposed in [30]. In [31], LGPMPC is extended to solve the piecewise continuous OCPs.
However, LGPMPC does not consider the variation in terminal time, so it cannot solve the
OCPs with unspecified terminal time.

At present, some methods such as the quasi-linearization method and gradient method
have the potential to solve the unspecified terminal time OCPs online. The gradient
method can be divided into first-order gradient method (FOGM), second-order gradient
method (SOGM) and conjugate gradient method (CGM) [32]. It should be noted that
both quasi-linearization method and gradient method are iterative algorithms, which
approach the optimal solution gradually by iterating the initial value. Some studies have
been previously made. In [33], an algorithm based on the improved quasi-linearization
technique is proposed to solve the OCPs with unspecified final time. Yang proposed a
two-stage gradient method to solve two-stage OCPs with uncertain switching time [34].
A multisystem gradient method was proposed in [35] to solve the integrated OCPs of
multiple systems with free terminal time, which is on the foundation of FOGM. In [36], a
CGM with pseudospectral collocation scheme is proposed, which is successfully applied to
the landing guidance of rockets. Although these methods are successful, we found that
if other orthogonal polynomials are involved, the computational efficiency can be further
improved and the analytical correction formulas can be further simplified.

In this work, a linear Chebyshev pseudospectral method (LCPM) is proposed for
solving OCPs with unspecified terminal time. The main contributions can be summarized
as follows. First, by linearizing the dynamic system, the first-order necessary conditions for
the discrete form of unspecified terminal time OCPs can be obtained. Second, the correction
formulas of control and final time satisfying first-order necessary conditions are derived.
The solution to the original problem is transformed into successively solving a set of linear
differential equations containing costate variables. Next, the obtained differential equations
are discretized on the Chebyshev–Gauss–Lobatto (CGL) points. As a result, a series of
analytical correction formulas are successfully derived in approximating polynomial space.
The significant differences between this work and previous work are as follows: 1. The
variation in terminal time is considered, and the correction formula of terminal time is
derived. 2. CGL points are used to discretize the differential equation, and its expansion
is very close to the best polynomial approximation under infinite norm. In addition, CGL
points can be solved in closed form without using numerical techniques. Finally, the guid-
ance problem of air-to-ground missile is used to test the proposed method. The simulation
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results show that LCPM has high computational efficiency and fast convergence rate. In
comparison with the results of GPOPS-II, the optimality of LCPM is comprehensively
confirmed. In addition, Monte Carlo simulation results show that LCPM can still converge
in the presence of random uncertainty, which verifies the robustness and stability of the
algorithm. Conclusively, this method has potential to be applied onboard.

The paper is organized as follows. Section 2 shows the first-order necessary conditions
of OCPs with unspecified terminal time. In Section 3, the derivations of updating control
and final time are presented. The simulation results and discussion are given in Section 4.
Finally, the conclusion is given in Section 5.

2. Problem Formulation

In this section, the general form and first-order necessary conditions of nonlinear
OCPs with unspecified terminal time are given.

Consider a general nonlinear dynamic system whose differential equations can be
written as

.
x = f (x(t), u(t), t) (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control vector and t ∈ R is the time variable.
The hard terminal constraints are

ψ
(

x(t f )
)
= 0 (2)

Here, ψ is the terminal constraint functions and t f is the unspecified final time. The
performance index is

J = φ
[

x(t f ), t f

]
+
∫ t f

t0

L(x, u, t)dt (3)

where t0 is the initial time. Equations (1)–(3) describe an OCP with unspecified terminal
time. The goal is to find an optimal control and terminal time to minimize the performance
index.

Using Taylor expansion and neglecting higher-order terms, the nonlinear differential
equations are linearized as

.
x = Ax + Bu (4)

where A = ∂ f
∂x , B = ∂ f

∂u .
To solve OCPs iteratively, the state and control variables are expressed as

x = xp − δx
u = up − δu

(5)

Here, xp and up represent nominal state and control variables. δx and δu are the
deviations from the state and control. Then, Equation (4) can be rewritten as

.
x =

(
xp − δx

)
′ = A

(
xp − δx

)
+ B

(
up − δu

)
(6)

Select L = 1
2 uT Ru, the augmented performance index of the system can be expressed

as

Ja = φ
[

x(t f ), t f

]
+
∫ t f

t0

[
1
2
(
up − δu

)T R
(
up − δu

)
+ λT( f − .

x
)]

dt (7)

Hamiltonian function can be defined as

H = L + λT f =
1
2
(
up − δu

)T R
(
up − δu

)
+ λT(A

(
xp − δx

)
+ B

(
up − δu

))
(8)

where λ is the costate variable.
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The modified state and control variables are expected to satisfy the first-order necessary
conditions. According to the first-order necessary conditions, it is easy to find that

∂H
∂u = ∂H

∂(up−δu)
= R

(
up − δu

)
+ BTλ = 0

⇒ δu = up + R−1BTλ
(9)

.
λ = −∂H

∂x
= − ∂H

∂
(
xp − δx

) = −ATλ (10)

According to (4), (6) and (9), we have

δ
.
x = Aδx + Bδu = Aδx + B

(
up + R−1BTλ

)
(11)

The transversality condition is

λ(t f ) =
∂φ

∂x(t f )
+

∂ψT

∂x(t f )
v (12)

where v is a Lagrange multiplier vector corresponding to terminal constraints. There are
two cases of the terminal value of the costate variables. For unconstrained terminal state
variable components xj

(
t f

)
, the corresponding costate variables are

λj(t f ) =
∂φ

∂xj(t f )
(13)

For constrained terminal state variable components xj

(
t f

)
, the corresponding costate

variables are
λj(t f ) =

∂φ

∂xj(t f )
+ vj (14)

It can be seen that λj

(
t f

)
is known when xj

(
t f

)
is unconstrained, and λj

(
t f

)
is

unknown when xj

(
t f

)
is constrained.

Since the terminal time is not fixed, the following additional condition needs to
be considered. (

∂φ

∂t f
+ H

(
t f

))
t f

= 0 (15)

Equations (6), (9), (10), (12) and (15) constitute the first-order necessary conditions for
the OCPs with unspecified terminal time.

3. Linear Chebyshev Pseudospectral Method

To solve original OCPs with unspecified terminal time, it is necessary to find the
optimal control and terminal time that satisfy the first-order necessary conditions. The
thought of LCPM is to iteratively make corrections on control and final time through first-
order necessary conditions in linear perturbation equations so as to approach the optimal
solution gradually.

In this section, the control and terminal time update strategies are derived first. Then,
the derivation of LCPM is provided. Finally, the implementation steps of this method
are given.

3.1. Control and Terminal Time Update Strategies

According to the derivation in Section 2, the correction of the control can be determined
by (9). Therefore, it is only necessary to derive the terminal time correction here.
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According to (7), the performance index can be written as

Ja = φ
[

x(t f ), t f

]
+
∫ t f

t0

[
L(x, u, t) + λT(t) f (x, u, t)− λT .

x
]
dt (16)

Considering the differential variations in final time t f , the differential of (16) is

dJa =
∂φ
∂t f

dt f +
∂φ

∂x(t f )
dx(t f ) +

(
L + λT f − λT .

x
)
dt f

+
∫ t f

t0

[
∂L
∂x δx + λT ∂ f

∂x δx + ∂L
∂u δu + λT ∂ f

∂u δu− λTδ
.
x
]
dt

(17)

Integrating (17) by parts, we can get

dJa =
∂φ
∂t f

dt f +
∂φ

∂x(t f )
dx(t f ) +

(
L + λT f − λT .

x
)
dt f −

(
λTδx

)
t=t f

+
(
λTδx

)
t=t0

+
∫ t f

t0

[(
∂L
∂x + λT ∂ f

∂x +
.
λ

T
)

δx +
(

∂L
∂u + λT ∂ f

∂u

)
δu
]

dt
(18)

Because x(t0) is given, we have δx(t0) = 0. The variation δx in x has the significance of
keeping time fixed, hence the differentiation and variation in x have the following relations

dx(t f ) = δx(t f ) +
.
x(t f )dt f (19)

Therefore, δx
(

t f

)
= dx

(
t f

)
− .

x
(

t f

)
dt f can be obtained. Substituting it into (18)

dJa =
∂φ
∂t f

dt f +
∂φ

∂x(t f )
dx(t f ) +

(
L + λT f − λT .

x
)
dt f − λTdx(t f )

+λT .
xdt f +

∫ t f
t0

[(
∂L
∂x + λT ∂ f

∂x +
.
λ

T
)

δx +
(

∂L
∂u + λT ∂ f

∂u

)
δu
]

dt
(20)

If only the differential change dt f is considered, the change in the performance index
due to dt f is

dJa|due to dt f
=

(
∂φ

∂t f
+ L + λT f

)
dt f (21)

From (21), we can choose

dt f = −ε

(
∂φ

∂t f
+ L + λT f

)
= −ε

(
∂φ

∂t f
+ H(t f )

)
(22)

where ε is a positive constant. Substituting (22) into (21), we have

dJa|due to dt f
= −ε

(
∂φ

∂t f
+ H(t f )

)2

(23)

It can be seen that unless dt f is zero, (23) is negative. Therefore, the dJa caused by

dt f will decrease until
(

∂φ
∂t f

+ H
(

t f

))
= 0, which also satisfies the first-order necessary

condition (15). It can be found that dt f will reduce the performance index until the optimal
solution is reached.

Now the modified forms of control and terminal time have been obtained, as shown
in (9) and (22), respectively. However, to figure out δu and dt f , the costate variable λ needs
to be solved first.

Equations (10) and (11) can be written as

dJa|due to dt f
= −ε

(
∂φ

∂t f
+ H(t f )

)2

(24)
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The OCP has been transformed into a two-point boundary value problem. By solving
(24), the costate variables λ can be solved; thus, the corrections of control and terminal time
can be obtained.

3.2. Derivation of LCPM

According to the derivation in the previous section, it is known that the key to solving
this problem is to solve Equation (24). However, (24) is a set of differential equations,
which cannot be solved in an analytical manner. To address this problem and develop a
more efficient algorithm, we hope to transfer them into a set of algebraic equations. Thus,
Lagrange interpolation polynomials and differential approximation matrices are used to
approximately replace variables and differential terms in (24), respectively. The analytical
formula can be obtained. The derivation of the algorithm is given below.

In this method, the interpolation nodes used are CGL points, which are in the interval
of [−1, 1]. Therefore, it is necessary to transform the time domain of the system

[
t0, t f

]
to

[−1, 1].

t =
t f − t0

2
τ +

t f + t0

2
(25)

The performance index is

J = φ
[

x(1), τf

]
+

t f − t0

2

∫ 1

−1

[
1
2
(
up − δu

)T R
(
up − δu

)]
dτ (26)

Equation (11) becomes

δ
.
x =

t f − t0

2
Aδx +

t f − t0

2
Bδu (27)

Differential Equation (24) is transformed to[
δ

.
x
.
λ

]
=

[ t f−t0
2 A

t f−t0
2 BR−1BT

0 − t f−t0
2 AT

][
δx
λ

]
+

t f − t0

2

[
Bup

0

]
(28)

The state, control and costate variables can be approximated as

δxN(τ) =
N
∑

l=0
δx(τl)φl(τ)

δuN(τ) =
N
∑

l=0
δu(τl)φl(τ)

λN(τk) =
N
∑

l=0
λ(τl)φl(τ)

(29)

The interpolation nodes used here are CGL points, which are the extreme points of
N-order Chebyshev polynomials TN(τ) = cos

(
N cos−1 τ

)
. CGL points are defined as

τl = cos(π(N − l)/N), l = 0, 1, · · · , N (30)

According to the properties of Lagrange interpolation polynomials, we have

φl(τk) =

{
1, l = k
0, l 6= k

(31)

δxN(τk) = δxk; δuN(τk) = δuk; λN(τk) = λk (32)
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The derivatives of state and costate variables can be represented by the differential
approximation matrices as

δ
.
xN

(τk) =
N
∑

l=0
Dklδxl

.
λ

N
(τl) =

N
∑

l=0
Dklλl

(33)

where Dkl is N × (N + 1) matrix, k = 1, · · · , N, l = 0, 1, · · · , N. Dkl can be obtained by
taking the derivative of Lagrange polynomials at CGL points.

Dkl =


N

∑
m = 0
m 6= l


N

∏
j = 0

j 6= l, m

(
τk − τj

)



/


N

∏
j = 0
j 6= l

(
τl − τj

)
 (34)

Since x(t0) is given, we have δx(t0) = 0. The state and costate variables can be
expressed as

δxl =
(
δxT

1 · · · δxT
N
)

λl =
(
λT

0 λT
1 · · · λT

N
) (35)

By substituting (33) into (28), a set of linear algebraic equations can be obtained.
N
∑

l=0
Dklδxl −

t f−t0
2
(

Akδxk + BkR−1BT
k λk

)
=

t f−t0
2 Bkupk

N
∑

l=0
Dklλl +

t f−t0
2 AT

k λk = 0
(36)

where k = 1, · · · , N. (36) can be expressed in matrix form

Sxxδx + Sxλλ = Mx

Sλλλ = Mλ (37)

where

Sxx =


D11 −

t f−t0
2 A1 D12 · · · D1N

D21 D22 −
t f−t0

2 A2 · · · D2N
...

...
. . .

...
DN1 DN2 · · · DNN −

t f−t0
2 AN


Nn×Nn

(38)

Sxλ =


0 − t f−t0

2 B1R−1BT
1 0 · · · 0

0 0 − t f−t0
2 B2R−1BT

2 · · · 0
...

...
...

. . .
...

0 0 0 · · · − t f−t0
2 BN R−1BT

N


Nn×(N+1)n

(39)

Sλλ =


D10 D11 +

t f−t0
2 AT

1 D12 · · · D1N

D20 D21 D22 +
t f−t0

2 AT
2 · · · D2N

...
...

...
. . .

...
DN0 DN1 DN2 · · · DNN +

t f−t0
2 AT

N


Nn×(N+1)n

(40)

Mx =
t f−t0

2 (B1uP1B2uP2 · · · BNuPN)
T
Nn

Mλ = (0 0 · · · 0 0)T
Nn

(41)
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The number of equations is 2Nn. Suppose that the number of state variables con-
strained by the terminal is h, then the δxN(k), k = 1, · · · , h is known. In addition, (n− h)
terminal costate variables λN(k); k = h + 1, · · · , n corresponding to the unconstrained
states can be solved by (13). Obviously, the number of unknowns is 2Nn. Therefore, the
system has a unique solution.

The costate variables can be solved by (37), and the update of control and terminal
time can be obtained from (9) and (22).

u = up − δu = −R−1BTλ (42)

t f = t f p + dt f = t f p − ε

(
∂φ

∂t f
+ L + λT f

)
(43)

3.3. Implementation Steps of LCPM

LCPM solves the OCPs with free final time by iteratively updating the control and
terminal time. First, the current control and final time are used to integrate the system
dynamic equations, then the information of trajectory and terminal error are obtained.
Finally, the control and final time are corrected using this information until it is close to the
optimal solution. The flow of the algorithm is as follows.

Step 1: Select initial control u0 and final time t f 0.
Step 2: Use the current control and final time to integrate the dynamic equations and record
the information of trajectory and terminal error dψ.
Step 3: Use the information of trajectory and terminal error to solve Equation (37), substitute
the obtained costate variables into (42) and (43). Then, the updated control and terminal
time can be obtained. To avoid the algorithm divergence caused by a large change in the
terminal time t f , we add a measure to restrict t f in the algorithm. If

∣∣∣dt f

∣∣∣ > k · t f , we

choose
∣∣∣dt f

∣∣∣ = k · t f , while the sign stays the same. Here, k is a positive constant. In this
paper, we select k = 2.5%.
Step 4: Take the updated control and final time as the current control and final time, return
to step 2, and judge whether the values of the terminal error and Equation (15) meet the
requirements. If so, the algorithm ends; if not, it continues.

The flow chart of the algorithm is shown in Figure 1. εψ and εt f are the convergence
criteria of the algorithm, and the specific values are given in Equation (47).

Through the above steps, the OCPs with unspecified terminal time can be solved. It
should be noted that the initial control, initial terminal time, parameters ε, k and conver-
gence criteria for terminal error need to be provided before the algorithm starts.
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4. Numerical Examples

In this section, the guidance problem of air-to-ground missiles, which can be regarded
as an OCP with unspecified terminal time, is used to test LCPM. The simulation example
used is similar to that in reference [22], but the difference is that the terminal time in [22] is
fixed, while the terminal time in our work is free. To verify the adaptability of the method
in different situations, three different conditions are selected for simulation. The three
simulations have the same initial conditions but different terminal constraints. Next, the
simulation results of LCPM are compared with that of GPOPS-II and FOGM. GPOPS-II is a
commonly used pseudospectral optimization software, which adopts Radau pseudospectral
technology. As described in the introduction, the traditional pseudospectral methods are
often used in off-line optimization. Therefore, GPOPS-II is used here to provide the optimal
solution to verify the optimality of LCPM. FOGM is an efficient optimization algorithm [32],
which is used to verify the efficiency of LCPM. Additionally, the LCPM in this paper is
compared with some of our previous work [35–37]. Finally, the convergence process of the
algorithm is given to discuss the convergence rate of the algorithm. All simulations are
performed on a personal computer with Core i5-1135G7 (2.4 GHz) processor using 2018b
MATLAB.

4.1. Dynamic Model and Simulation Parameters

The system dynamic equations are

.
v = −D

m − g sin γ
.
γ = −az−g cos γ

v.
ψ =

ay
v cos γ

.
x = v cos γ cos ψ

.
y = v cos γ sin ψ

.
z = v sin γ

(44)
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where x, y, z are three coordinates of the missile in space, v is the speed, γ is flight path
angle, ψ is heading angle and g is the acceleration of gravity. D is the drag, which can
be referred to in [38]. az and ay are command accelerations of the missile, that is, the
control variables.

The order of magnitude difference among different variables may lead to the instability
of numerical calculation. Therefore, it is necessary to normalize the variables.

vn = v
v∗ γn = γ

γ∗ ψn = ψ
ψ∗ xn = x

x∗
yn = y

y∗ zn = z
z∗ azn = az

az∗ ayn =
ay

ay∗
(45)

The subscript “n” means the normalized variables, while the superscript “*” denotes
the normalized constants. In addition, the performance index is selected as

J =
1
2

∫ t f

t0

uTudt (46)

The initial control and initial final time used in the simulation are obtained by pro-
portional navigation, which can be referred to in [22]. The relevant parameters used in
simulations are provided in Tables 1–3 show the initial conditions and terminal constraints
in different cases. It should be noted that the correction of t f depends on the parameter ε.
Hence, an appropriate ε makes the algorithm converge faster. We recommend the value of
ε to be 0.02–0.1.

Table 1. Simulation parameters.

Parameters Value

Normalizing velocity 600 m/s
Normalizing angle, (γ∗, ψ∗) (50 deg, 50 deg)
Normalizing coordinates, (x∗, y∗, z∗) (5 km, 5 km, 5 km)
Normalizing acceleration

(
az∗, ay∗

)
g = 9.81 m/s2

Mass of missile 150 kg
Surface area, sm 0.0324 m2

ε in case 1, 2, 3 (0.05, 0.078, 0.078)

Table 2. Initial conditions.

v(m/s) γ(◦) ψ(◦) (x,y,z) (km)

Case 1 510 15 15 (0, 2, 6)
Case 2 510 15 15 (0, 2, 6)
Case 3 510 15 15 (0, 2, 6)

Table 3. Terminal constraints.

v(m/s) γ(◦) ψ(◦) (x,y,z)(km)

Case 1 \ −65 −40 (10, 1, 0)
Case 2 \ −70 −35 (11, 1.5, 0)
Case 3 \ −75 −40 (10, 2, 0)

The “\” in Table 3 means that no constraint is imposed on the terminal velocity. The terminal time is unspecified,
which can be automatically calculated by the algorithm.

4.2. Simulation Results and Discussion

First, the simulation results of LCPM are compared with that of FOGM and GPOPS-II.
In the simulation, the fourth-order Runge–Kutta method is used to integrate the trajectory,
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and the number of integration steps is 100. The number of CGL points selected is 10. When
the algorithm ends, the terminal errors need to meet the following requirements∣∣∣δx f

∣∣∣ < 1(m);
∣∣∣δy f

∣∣∣ < 1(m);
∣∣∣δz f

∣∣∣ < 1(m)∣∣∣δγ f

∣∣∣ < 0.001(rad);
∣∣∣δψ f

∣∣∣ < 0.001(rad)∣∣∣∣∣( ∂φ
∂t f

+ H
(

t f

))
t f

∣∣∣∣∣ < 0.1

(47)

Figure 2 shows the trajectories of the missile in three cases. It can be seen that the
missiles successfully attacked the designated terminal points. Figures 3 and 4 are the
flight path angle and heading angle histories, respectively. Obviously, all constraints of
terminal state variables are enforced for three methods. Figures 5 and 6 show the command
accelerations, which are the control variables in the solving process. They are smooth and
continuous. In the three cases, the state and control curves obtained by LCPM coincide
with the optimal solution generated by GPOPS-II, which verifies the optimality of LCPM.
In addition, the stability of the algorithm is verified by applying it to different situations.

Aerospace 2022, 9, x FOR PEER REVIEW 11 of 19 
 

 

Table 3. Terminal constraints. 

 �(�/�) �(∘) �(∘) (�, �, �)(��) 

Case 1 \ −65 −40 (10, 1, 0) 

Case 2 \ −70 −35 (11, 1.5, 0) 

Case 3 \ −75 −40 (10, 2, 0) 

The “\” in Table 3 means that no constraint is imposed on the terminal velocity. The terminal time 

is unspecified, which can be automatically calculated by the algorithm. 

4.2. Simulation Results and Discussion 

First, the simulation results of LCPM are compared with that of FOGM and GPOPS-

II. In the simulation, the fourth-order Runge–Kutta method is used to integrate the trajec-

tory, and the number of integration steps is 100. The number of CGL points selected is 10. 

When the algorithm ends, the terminal errors need to meet the following requirements 

 

1(m);   1(m);   1(m)

0.001(rad);   0.001(rad)

0.1

f

f f f

f f

f

f t

x y z

H t
t

  

 



  

 

 
    

 

(47)

Figure 2 shows the trajectories of the missile in three cases. It can be seen that the 

missiles successfully attacked the designated terminal points. Figures 3 and 4 are the flight 

path angle and heading angle histories, respectively. Obviously, all constraints of terminal 

state variables are enforced for three methods. Figures 5 and 6 show the command accel-

erations, which are the control variables in the solving process. They are smooth and con-

tinuous. In the three cases, the state and control curves obtained by LCPM coincide with 

the optimal solution generated by GPOPS-II, which verifies the optimality of LCPM. In 

addition, the stability of the algorithm is verified by applying it to different situations. 

 

Figure 2. Comparison of missile 3D trajectories. 
Figure 2. Comparison of missile 3D trajectories.

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 3. Comparison of flight path angle. 

 

Figure 4. Comparison of heading angle. 

 

Figure 5. Comparison of control az. 

a
z
 (

g
)

Figure 3. Comparison of flight path angle.



Aerospace 2022, 9, 458 12 of 18

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 3. Comparison of flight path angle. 

 

Figure 4. Comparison of heading angle. 

 

Figure 5. Comparison of control az. 

a
z
 (

g
)

Figure 4. Comparison of heading angle.

Aerospace 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 3. Comparison of flight path angle. 

 

Figure 4. Comparison of heading angle. 

 

Figure 5. Comparison of control az. 

a
z
 (

g
)

Figure 5. Comparison of control az.

Aerospace 2022, 9, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 6. Comparison of control ay. 

As mentioned in the introduction, FOGM is an efficient algorithm for solving the 

OCPs with unspecified terminal time. Therefore, time consumption for LCPM and FOGM 

is provided to verify the efficiency of LGPM. Actually, the time consumption of these two 

algorithms is mainly composed of two parts, the one is trajectory integration (step 2), and 

the other is control update (step 3). The trajectory integral process of the two algorithms 

is similar, so the time consumption is similar. As the core part of the algorithms, the con-

trol update time consumption of the two methods is quite different. From Table 4, it can 

be found that the trajectory integral time consumption of LCPM and FOGM is similar, 

while the control update time consumption of LCPM is significantly less than FOGM. The 

reason is that LCPM removes the calculating process of many special integrals which is 

necessary for FOGM to update the control. It is easy to conclude that the proposed algo-

rithm has high computational efficiency. Compared with FOGM, LCPM can improve the 

calculation efficiency by about 20–30%. If more specialized computer and programming 

languages are used, the time consumption will be further reduced. 

Table 4. Time consumption of LCPM and FOGM. 

Average Time 

Consumption of 

a Single Itera-

tion 

Trajectory Integration (s) Control Update (s) Efficiency 

Improve-

ment of 

LCPM 

LCPM FOGM LCPM FOGM 

Case 1 0.0196 0.0188 0.0018 0.0078 19.6% 

Case 2 0.0191 0.0198 0.0019 0.0083 25.3% 

Case 3 0.0187 0.0201 0.0017 0.0086 28.9% 

Next, LCPM is compared with our previous work [35–37]. In [35], a multisystem gra-

dient method (MSGM) is proposed. To apply MSGM to the simulation example of this 

paper, we consider its number of systems as one. In [36], a pseudospectral collocation 

conjugate gradient method is proposed to solve the OCPs with hard terminal constraints 

and fixed final time. To compare PCCG with LCPM, the terminal time obtained by LCPM 

is selected as the terminal time of PCCG. In [37], a successive Chebyshev pseudospectral 

convex optimization (SCPCO) method is proposed. For the sake of fairness, these three 

methods are simulated in the same computing environment as LCPM. Because the integral 

prediction time consumption of several methods is basically the same, the time consump-

tion of the control update is compared. The comparison results are shown in Table 5. 

  

a
y
 (

g
)

Figure 6. Comparison of control ay.

As mentioned in the introduction, FOGM is an efficient algorithm for solving the
OCPs with unspecified terminal time. Therefore, time consumption for LCPM and FOGM
is provided to verify the efficiency of LGPM. Actually, the time consumption of these two
algorithms is mainly composed of two parts, the one is trajectory integration (step 2), and
the other is control update (step 3). The trajectory integral process of the two algorithms is
similar, so the time consumption is similar. As the core part of the algorithms, the control
update time consumption of the two methods is quite different. From Table 4, it can be
found that the trajectory integral time consumption of LCPM and FOGM is similar, while
the control update time consumption of LCPM is significantly less than FOGM. The reason



Aerospace 2022, 9, 458 13 of 18

is that LCPM removes the calculating process of many special integrals which is necessary
for FOGM to update the control. It is easy to conclude that the proposed algorithm has
high computational efficiency. Compared with FOGM, LCPM can improve the calculation
efficiency by about 20–30%. If more specialized computer and programming languages are
used, the time consumption will be further reduced.

Table 4. Time consumption of LCPM and FOGM.

Average Time Consumption
of a Single Iteration

Trajectory Integration (s) Control Update (s) Efficiency Improvement of
LCPMLCPM FOGM LCPM FOGM

Case 1 0.0196 0.0188 0.0018 0.0078 19.6%
Case 2 0.0191 0.0198 0.0019 0.0083 25.3%
Case 3 0.0187 0.0201 0.0017 0.0086 28.9%

Next, LCPM is compared with our previous work [35–37]. In [35], a multisystem
gradient method (MSGM) is proposed. To apply MSGM to the simulation example of this
paper, we consider its number of systems as one. In [36], a pseudospectral collocation
conjugate gradient method is proposed to solve the OCPs with hard terminal constraints
and fixed final time. To compare PCCG with LCPM, the terminal time obtained by LCPM
is selected as the terminal time of PCCG. In [37], a successive Chebyshev pseudospectral
convex optimization (SCPCO) method is proposed. For the sake of fairness, these three
methods are simulated in the same computing environment as LCPM. Because the integral
prediction time consumption of several methods is basically the same, the time consumption
of the control update is compared. The comparison results are shown in Table 5.

Table 5. Time consumption of LCPM and other three methods.

Average Time Consumption
of a Control Update LCPM MSGM PCCG SCPCO

Case 1 0.0018 0.0031 0.0076 0.48
Case 2 0.0019 0.0030 0.0077 0.49
Case 3 0.0017 0.0028 0.0079 0.49

As can be seen from Table 5, LCPM has higher computational efficiency than the
other three methods on this problem. However, the other three methods have their own
advantages. For example, MSGM can be used to solve the optimization problems of
multiple systems, and PCCG can be used to solve the problems with general performance
indexes. As for SCPCO, because it needs to use a third-party solver, the computational
efficiency is relatively low. Nevertheless, SCPCO can solve problems with control and state
constraints, and has good global optimality. Through this comparison, it shows that LCPM
has advantages in solving the problems given in Section 2.

The control update speed of LCPM is closely related to the number of CGL points.
With the increase in CGL points, computational efficiency will decrease. The number of
CGL points should be carefully selected by users. Table 6 shows the control update time
consumption of LCPM with a different number of CGL points. In general, the number of
CGL points can be selected as 5–15.

Table 6. Time consumption of LCPM with different CGL points.

Control
Update Time

Number of CGL Points

6 8 10 15 20

Case 1 0.0014 0.0015 0.0018 0.0029 0.0046
Case 2 0.0013 0.0016 0.0019 0.0031 0.0047
Case 3 0.0013 0.0015 0.0017 0.0030 0.0048

In order to reveal the convergence process of the algorithm as clear as possible, the
variation in the terminal error and terminal time with the number of iterations is plotted.
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Because terminal error is a vector, the infinite norm of the vector is selected to measure
terminal error.

terminal error =‖dψ
(

t f

)
‖

∞
(48)

Figures 7 and 8 show the variation in the terminal error and terminal time, respectively.
It can be seen that in the previous iterations, the convergence trend of terminal error is
not obvious, while the terminal time quickly approaches the optimal solution. In the later
iterations, the terminal error converges rapidly, but the terminal time changes slightly. That
is consistent with the fact that great changes in the terminal time lead to slow convergence
for the terminal error. When the terminal time is near the optimal one, the terminal error
has fast convergence rate. It can be seen from Figures 7 and 8 that the algorithm can
converge after only a few iterations. Therefore, LCPM has a fast convergence rate. After
the last iteration, the terminal error and Equation (15) both meet the requirements of (47).
The normalized terminal errors in three cases are given in Table 7.
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Table 7. Terminal errors in three cases.

dγf dψf dxf dyf dzf

Case 1 3.927 × 10−5 −3.024 × 10−5 4.105 × 10−5 1.085 × 10−4 1.986 × 10−4

Case 2 2.030 × 10−5 −7.520 × 10−5 2.545 × 10−5 7.365 × 10−5 1.083 × 10−4

Case 3 4.408 × 10−5 −4.389 × 10−5 2.778 × 10−5 7.602 × 10−6 1.097 × 10−6

In the actual flight process, the vehicle suffers from the uncertainty of atmospheric
density and aerodynamic coefficient, which are the most critical factors for the success of
flight mission. This requires the algorithm to have good stability and robustness. To verify
the robustness of the proposed method, Monte Carlo simulation is carried out, in which the
simulation conditions are the same as that in case 1. The uncertainty of the aerodynamic
coefficients and atmospheric density follows the 3σ principle of normal distribution. The
simulation parameters are given in Table 8. In total, 500 Monte Carlo simulations results
are presented in Figures 9 and 10, Table 9.

Table 8. Dispersion of parameters.

Parameters 3σ Range Distribution

δρ ±15% Gaussian
δCL ±15% Gaussian
δCD ±15% Gaussian

Aerospace 2022, 9, x FOR PEER REVIEW 16 of 19 
 

 

distribution. The simulation parameters are given in Table 8. In total, 500 Monte Carlo 

simulations results are presented in Figures 9 and 10, Table 9. 

Table 8. Dispersion of parameters. 

Parameters �� Range Distribution 

�� ±15% Gaussian 

��� ±15% Gaussian 

��� ±15% Gaussian 

Table 9. Mean and variance of terminal errors. 

Terminal Errors Mean Variance 

��� 5.5441 × 10−6 6.8281 × 10−10 

��� 6.4341 × 10−5 3.4546 × 10−9 

��� 8.8958 × 10−5 5.0744 × 10−9 

��� 8.9497 × 10−6 2.3554 × 10−9 

��� −4.4885 × 10−5 2.3276 × 10−8 

 

Figure 9. Monte Carlo simulation results of missile trajectory. 
Figure 9. Monte Carlo simulation results of missile trajectory.



Aerospace 2022, 9, 458 16 of 18

Aerospace 2022, 9, x FOR PEER REVIEW 17 of 19 
 

 

 

Figure 10. Monte Carlo simulation results of state and control variables. 

The missile trajectory histories of Monte Carlo simulations are shown in Figure 9, 

and the state and control variables are shown in Figure 10. It is obvious that the proposed 

method can adapt to all kinds of random situations. From the mean and variance given in 

Table 9, it can be inferred that the terminal errors are closely distributed around zero. 

Therefore, the algorithm has strong robustness even when large uncertainty and disper-

sion are involved. 

5. Conclusions 

A linear Chebyshev pseudospectral method is proposed for solving the nonlinear 

OCPs with free final time. The control and final time correction formulas are derived the-

oretically. The solution to the original problem is transformed into successively solving a 

set of linear equations. Then, Chebyshev polynomials are used to discretize them so as to 

successfully drive analytical correction formulas for control and terminal time. As we all 

know, real-time applications require high efficiency and convergence rate of the algo-

rithm. To verify the performance of the method, it is applied to the guidance problem of 

air-to-ground missiles. It can be seen from the simulation results that the proposed 

method not only has optimality, but also has high computational efficiency and a fast 

convergence rate. Additionally, the stability and robustness of the proposed method are 

verified by Monte Carlo simulations. Therefore, we believe that this method has the po-

tential to be applied online in practical engineering problems. 

  

Figure 10. Monte Carlo simulation results of state and control variables.

Table 9. Mean and variance of terminal errors.

Terminal Errors Mean Variance

dγ f 5.5441 × 10−6 6.8281 × 10−10

dψ f 6.4341 × 10−5 3.4546 × 10−9

dx f 8.8958 × 10−5 5.0744 × 10−9

dy f 8.9497 × 10−6 2.3554 × 10−9

dz f −4.4885 × 10−5 2.3276 × 10−8

The missile trajectory histories of Monte Carlo simulations are shown in Figure 9, and
the state and control variables are shown in Figure 10. It is obvious that the proposed
method can adapt to all kinds of random situations. From the mean and variance given
in Table 9, it can be inferred that the terminal errors are closely distributed around zero.
Therefore, the algorithm has strong robustness even when large uncertainty and dispersion
are involved.

5. Conclusions

A linear Chebyshev pseudospectral method is proposed for solving the nonlinear
OCPs with free final time. The control and final time correction formulas are derived
theoretically. The solution to the original problem is transformed into successively solving
a set of linear equations. Then, Chebyshev polynomials are used to discretize them so
as to successfully drive analytical correction formulas for control and terminal time. As
we all know, real-time applications require high efficiency and convergence rate of the
algorithm. To verify the performance of the method, it is applied to the guidance problem of
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air-to-ground missiles. It can be seen from the simulation results that the proposed method
not only has optimality, but also has high computational efficiency and a fast convergence
rate. Additionally, the stability and robustness of the proposed method are verified by
Monte Carlo simulations. Therefore, we believe that this method has the potential to be
applied online in practical engineering problems.
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