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ABSTRACT 
 
Nutrient loss from the soil is influenced by topography and crop uptake. Knowledge of spatial 
variability of soil properties can help in site-specific nutrient management. It was attempted to study 
the effect of topography and land uses on spatial variability of soil organic carbon (SOC), available 
nitrogen (N), available phosphorus (P) and available potassium (K) in acidic soils of the research 
farm of National Bureau of Plant Genetic Resource having annual crop (ginger/turmeric) with 25% 
slope (NBPGR 1), buckwheat-pulse, maize-fallow, perennial medicinal plants with 9% slope 
(NBPGR 2), Indian Council of Agricultural Research-Krishi Vigyan Kendra farm having 
ginger/turmeric, maize-vegetable, pulse-vegetable with 9% slope (ICAR-KVK) and ICAR-
Horticulture farm having guava/mandarin with 25% slope. The SOC content was in the order of 
guava (2.15%) > mandarin (2.06%) > ginger/turmeric at NBPGR 1(1.98%) > maize-vegetable 
(1.87%) > medicinal plants (1.81%) > buckwheat-pulse (1.78%) > maize-fallow (1.76%) = pulses-
vegetable (1.76%) > ginger/turmeric at ICAR-KVK (1.56%). The N was higher in buckwheat-pulse 
(460.35 kg/ha) followed by guava (420.85 kg/ha), maize-fallow (409.92 kg/ha), ginger/turmeric of 
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ICAR-KVK (404.50 kg/ha), medicinal plants (402.2 kg/ha), pulse-vegetable (377.46 kg/ha), 
mandarin (366.14 kg/ha), maize-vegetable (364.68 kg/ha) and ginger/turmeric of NBPGR 1 (348.06 
kg/ha). The P was in the order of maize-vegetable (52.07 kg/ha) > pulse-vegetable (40.14 kg/ha

1
) > 

ginger/turmeric of ICAR-KVK (35.67 kg/ha) > buckwheat-pulses (22.23 kg/ha) > mandarin (21.06 
kg/ha) > guava (20.83 kg/ha) > maize-fallow (16.58 kg/ha) > ginger/turmeric of NBPGR 1 (15.71 
kg/ha) > medicinal plants (13.33 kg/ha). The K was observed higher in guava (422.80 kg/ha) 
followed by buckwheat-pulse (330.86 kg/ha), ginger/turmeric of NBPGR 1 (192.13 kg/ha) and 
maize-vegetable (181.73 kg/ha). The nugget/sill ratio of P had strong to moderate and SOC, N and 
K had moderate to weak spatial autocorrelation in NBPGR 1 and NBPGR 2. All the nutrients in 
ICAR-KVK farm were found to have weak spatial correlation. Most suitable interpolation technique 
for SOC and K was the Radial Basis Function (RBF), ordinary kriging for N and P and gaussian 
model for ICAR-KVK farm. In ICAR-Horticulture farm, the exponential and pentaspherical 
semivariogram model best described the SOC, N, K and P, respectively. The nugget/sill ratio of P 
and K showed moderate spatial dependence and this was weak for SOC and N. 
 

 
Keywords: Available nutrient; spatial variability; topography; land use; soil organic carbon. 
 

1. INTRODUCTION  
 
Since the advent of agriculture, there has been 
an innate interest in soil and land quality [1]. A 
considerable amount of nutrients from the soil is 
lost every year and this is influenced by 
topography, land use and level of erosion. The 
North Eastern Hill (NEH) region of India is very 
much prone to the soil and nutrient loss due to 
hilly terrain (77% hilly), very high rainfall (>2000 
mm per annum), shifting cultivation and little soil 
and water conservation interventions. A large 
quantity of mineral nutrients is removed from 
soils due to crop uptake [2]. In this regard, an 
understanding of the spatial variability of soil 
nutrients at the field scale is important and useful 
for site-specific nutrient management [3]. Spatial 
variability of soil fertility is a function of intrinsic 
factors (soil forming factors and processes) and 
extrinsic factors (topography, land use and soil 
management practices) [4]. In traditional 
approach of soil fertility management, entire crop 
field is considered as homogeneous for 
calculating the fertilizer requirement. On the 
contrary, fields are actually not homogeneous 
and subsequently, sampling techniques to 
describe field variability have been 
recommended [5]. Application of classical 
statistics have some limitations for soil 
management studies because the variables 
(treatments) under investigation should be 
normally distributed and be spatially independent 
within the large experimental plots which leads to 
the confrontation with variability within such 
experimental plots. In recent years, geo-
statistical techniques including non-parametric 
models having different algorithms and producing 
different interpolation errors are widely used for 
assessment of spatial variability of soil [6,7]. 

Vieira and Paz-Gonzalez [8] found spatial 
dependence between soil properties and crop 
yield components instead of having random 
spatial distributions, meaning that the 
observations are somehow related to their 
neighbours. Assessment of spatial dependence 
requires the application of geo-statistical 
procedures such as the analysis of scaled 
semivariograms using kriging [9]. Describing the 
spatial variability across a field has been difficult 
until new technologies such as Global 
Positioning Systems (GPS) and Geographic 
Information Systems (GIS) were introduced. 
Most of the soil variability studies have been 
carried out in hot-arid or semi-arid climate of 
India [5,10] and only a few studies have been 
carried out in humid subtropical climate of India 
[11]. Hence, this study attempts to assess the 
spatial variability of soil organic carbon (SOC), 
available nitrogen (N), available phosphorus (P) 
and available potassium (K) under different 
topography and land uses using geo-statistical 
techniques. 
 
2. MATERIALS AND METHODS  
 

2.1 Description of the Soil Sampling Sites 
 
Four soil sampling sites were selected for the 
present study based on variation in slope and 
land use. These four sites were National Bureau 
of Plant Genetic Resources site 1 (NBPGR 1), 
NBPGR 2, Indian Council of Agricultural 
Research-Krishi Vigyan Kendra (ICAR-KVK) 
farm and ICAR-Horticulture farm located in 
Umiam, Ri-Bhoi district, Meghalaya (India). The 
average annual rainfall of the study sites was 
2349 mm; mostly confined around May to 
November and mean daily temperature varied 
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from 2.58°C in January to 32.58°C in August 
[12]. Details of the soil sampling sites have been 
given in Table 1. 
 

2.2 Soil Sampling and Laboratory 
Analysis of Soil Sample 

 
One composite soil sample from 10m x 10m grid 
was collected from each experimental site 
following standard procedure using Global 
Positioning System (GPS map 76CSX) during 
January to March, 2015 from a depth of 0-20 cm 
(Fig. 1). The soil samples were air-dried, ground 

and sieved using 2 mm sieve. Soil samples were 
sieved with 0.5 mm sieve for determination of 
SOC.  The soil samples were analyzed for SOC 
[13], N [14], P [15] and K [16]. 
 
2.3 Statistical and Geo-statistical 

Analysis 
 
All data were analyzed by one-way analysis of 
variance (ANOVA) using statistical package for 
social science (SPSS) software 16.0 (SPSS Inc., 
Chicago, IL, USA). Means were tested at a 
significance level of p≤0.05 using duncan’s 

  
Table 1. Description of soil sampling sites 

 

Site Latitude 
(North) 

Longitude 
(East) 

Elevation 
(m) 

Slope 
(%) 

Crop Nutrient 
management 

NBPGR 1 25°41.00' 
to 
25°41.05'  

91°54.63' to 
91°54.66'  

997-1032 25 Pine forest before 
1980 

Nil 

Ginger/turmeric 
during 1980-2011 

500 g FYMa mixed 
with 10 gm DAP2 & 
top dressing of 1-1.5 
g urea per plant per 
year  

Fallow during 
2012-14 

Nil 

Turmeric in 2015 500 g FYM mixed 
with 10 gm DAPb 
per plant per year 

NBPGR 2 25°41.03' 
to 
25°41.12'  

91°54.87' to 
91°54.95' 

931-977 9 Buckwheat-pulsec 
since 1980 

FYM @ 500g in 
2mx2m plots 

Medicinal plantsd 
since 1980 

Nil 

Maize-fallow 
since 1980 

Nil 

ICAR-KVK  25°41.26' 
to 
25°41.30'  

91°55.08' to 
91°55.14'  

931-977 9 Ginger/turmeric 
since 1978   

FYM @ 6 t/ha and 
Urea:SSP:MOP @ 
23:25:33 kg/ha 

Maize-vegetablee 
since 1978     

FYM @ 10 t/ha and 
Uera:SSP:MOP @ 
65:250:67 kg/ha 

Pulse3-vegetable 
since 1978     

FYM @ 5 t/ha and 
Urea:SSP:MOP @ 
45:375:70 kg/ha 

Forest before 
1981 

Nil 

ICAR-
Horticulture  

25°41.38' 
to 
25°41.44' 

91°55.19' to 
91°55.29' 

951-1005 25 Guava since 1981 FYM @ 5 t/ha and 
N:P:K @ 
500:200:300 
gm/plant/year 

Mandarin since 
1981 

a 
Farm Yard Manure, 

b 
Diammonium Phosphate, 

c
 black gram, soybean & groundnut, 

 d
Perilla & Coix, 

e 
colocasia, 

elephant foot yam, cabbage, cauliflower & broccoli 
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multiple range test (DMRT). Geostatistical 
analysis consisting of semivariogram calculation, 
cross-validation and mapping were performed 
using the geo-statistical analyst extension of 
ArcGIS 9.3.1 version [17]. Variable z of 
unsampled locations was estimated based on the 
weighted average of neighbouring measured 
locations and similarity & correlation of more 
closed points [18]. Semivariogram γˆ(h) 
describing the spatial variability was half of 
squared difference between paired data values 
z(uα) and z(uα+h). Graphically, it was 
represented by the average difference in attribute 
values between observations (i.e. Semivariance 
γˆ(h) versus distances apart i.e. Lag(h)                         
and  described in Fig. 2. The semivariance                  
γˆ(h) was estimated using the following              
formula 
  

 

 

where z(uα) and z(uα+h) indicated the value of 
the variable z at location of uα, h the lag and 
N(h) was the number of pairs of sample points 
(uα, uα+h) for property z separated by distance 
h. Semivariogram was computed in different 
directions for determining any anisotropic 
variation. The lag at which the semivariance 
became constant was known as sill (i.e. one 
value for a variable does not influence 
neighboring values). The distance at which the 
semivariance reached the sill was the range [19]. 
The semivariogram intercept on the y-axis was 
known as nugget which described the variation 
occurring at shorter distance than the minimum 
sampling interval. Best-fit models were selected 
with smallest nugget values with minimum root 
mean square error (RMSE). The expression of 
RMSE was as follows:  
 

 

 

 
Fig. 1. Soil sampling sites in the four experimental farms (one sample from 10 m x 10 m grid) 
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Fig. 2. Semivariogram 

 
Semivariogram calculations were carried out 
while checking for possible trends in the datasets 
and if detected, trends were removed by fitting a 
polynomial surface and working with the 
residues. Omni-directional semivariograms were 
calculated and mathematical models were fitted 
to the experimental values. The best fit line was 
selected by cross-validation and once a model is 
chosen; its parameters (nugget effect, sill and 
range of spatial dependence) were determined 
using a least square approximation. The spatial 
dependence degree (SDD) was calculated as the 
proportion in percentage of nugget effect (C0) to 
the sill (C0 + C1) and classified as strong (< 
25%), moderate (25-75%) and weak (> 75%) [3]. 
The semivariogram parameters obtained from 
the fitted model were used to interpolate values, 
at unsampled locations over the plot on a grid 
with an interval of 2 m using kriging. The optimal 
number of data points to be incorporated in the 
interpolation were determined by cross 
validation. The interpolation variance was also 
calculated. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Effect of Slope and Land Uses on 
SOC, N, P, and K 

 
Slope has been regarded as one of the most 
important topographic factors that controls the 
pedogenic process on a local scale [20,21]. 
SOC, N, P and K content in ICAR-Horticulture 
farm was found to be higher than that of NBPGR 
1 (Table 2). The guava and mandarin plantation 
since 1981 with adequate nutrient management 
practices might have acted as natural forest and 
contributed to accumulation of nutrients through 
leaf litterfall (Table 3). Sahrawat [22] reported 
that forests had higher rate of N mineralization 

and nitrification than agricultural sites and result 
in greater N availability where there is less 
human disturbance. It was observed that the 
SOC was low in NBPGR 2 and ICAR-KVK farm 
but N, P and K were relatively high. Higher level 
of N, P and K in NBPGR 2 might be attributed to 
less nutrient uptake by the crops which were 
cultivated only to maintain the gene pool. Again, 
low level of SOC in the ICAR-KVK farm might be 
due to intensive tillage and fertilization which 
enhanced soil organic matter decomposition  
[23]. The buckwheat-pulses and maize-fallow 
sequence in NBPGR 2 and pulses-vegetable 
sequence in ICAR-KVK farm have also shown 
low SOC content. Thakuria et al. [2] also 
reported declining trend of SOC contents in soil 
of rice-legume-rice cropping system in acid soils 
of Assam, India. Again, optimum application of 
inorganic fertilizers was found to maintain or 
slightly increase the SOC content over the years 
[24]. Many authors also noted increased SOC 
contents on gentle and moderate slopes rather 
than steep slopes [25,26].  
 
Higher N has been found in the buckwheat-
pulses, maize-fallow sequence of NBPGR 2, 
guava orchard of ICAR-Horticulture farm and 
ginger/turmeric of ICAR-KVK farm. This might be 
attributed to low N uptake by ginger/turmeric, N 
supply through N fixation by buckwheat-pulses 
sequence and manure and fertilizer application in 
guava/mandarin. Lower N in ginger/turmeric of 
NBPGR 1, maize-vegetables and pulse-
vegetables of ICAR-KVK might be due to high 
amount of N uptake and runoff loss in the steep 
slope (25%). The crop field of pulses-vegetables 
in ICAR- KVK farm has shown more N content.  
 
This has been observed that mild slope (9%) 
stored more amount of P as compare to the 
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steep slope (25%) (Table 2). However, higher 
amount of P in ICAR-Horticulture farm (25% 
slope) could be due to regular application of 
phosphatic fertilizer in the orchard (Table 1). 
Increase in P due to application of phosphatic 
fertilizer has been reported earlier also [27]. The 
soil of the study sites were strongly acidic (pH 
4.3) and most of the added P through mineral 
fertilizers to these soils gradually reacted with Fe 
and Al compounds and transformed into 
relatively insoluble P compounds. Thakuria et al. 
[2] also reported accumulation of P in the sub 
soils in rice-legume-rice cropping system of acid 
soils of Assam, India. Lowest P was found in soil 
of medicinal plant of NBPGR 2. This might be 
due to poor nutrient management 
(manures/fertilizers were not applied). Similarly, 
higher content of K in guava/mandarin orchard 
soil could be attributed to the built up of soil K 
due to long-term application of K fertilizer (Table 
1). Again, low K content in ginger/turmeric of 
NBPGR 1 as compared to other land use might 
be due to non application of K fertilizer in the 
crop and uptake of K from soil reserve (Table 3). 
 

3.2 Descriptive Statistics and Spatial 
Variability of SOC, N, P, and K  

 

The statistical analysis of SOC, N, P, and K 
indicated that the data followed a normal 
distribution and spatial variability. Variability of a 
soil property could be described by minimum, 
maximum, difference between median and 
mean, standard deviation (SD) and coefficient of 
variation (CV). The median value of SOC of 

NBPGR 1 was almost equal to the mean value in 
none, log and box-cox transformation. The 
median of soil properties was lower than the 
mean, which indicated that the effect of abnormal 
data on sampling value were not significant. The 
CV of SOC was found highest in the box-cox 
transformation, which was shown by moderate 
variability (29.23%). Warrick and Nielsen [28] 
proposed three levels of variability of soil 
properties based on CV; low (< 12%), medium 
(12-62%) and high (> 62%). 
   
Skewness indicated departure from normality. 
The skewness for the normal distribution should 
be less than 3 and it was found to be 0.07 for the 
box-cox transformation. Lower values used to 
concentrate when skewness > 0. On the other 
hand, higher values used to concentrate when 
skewness < 0. Positive skewness indicated wider 
confidence limits on the variograms which made 
the variances less reliable. Kurtosis showed the 
characteristics of peak value corresponding to 
the average value in probability density 
distribution curve. The peak value of probability 
density distribution curve is higher than that of 
normal distribution when kurtosis > 0, equal to 
that of normal distribution when kurtosis = 0, 
lower than normal distribution when kurtosis < 0. 
Therefore, the box-cox transformation was 
considered for the SOC of NBPGR 1. The 
median of N after log transformation was found 
to be equivalent to mean, however, deviation of 
skewness from zero in case of log transformation  
was more as compared to none and box-cox 
transformation. The box-cox transformation was

 
Table 2. Effect of topography on SOC, N, P and K 

 

Topological site SOC (%) N (kg/ha) P (kg/ha) K (kg/ha) 
NBPGR 1 (25% slope) 2.02b 348.10c 15.71c 192.16c 
NBPGR 2 (9% slope) 1.83c 435.31a 18.97b 314.62b 
ICAR-KVK farm (9% slope) 1.84c 360.19bc 45.73a 277.46b 
ICAR-Horticulture farm (25% slope) 2.14a 389.43b 20.96b 364.51a 

 

Table 3. Effect of land use on SOC, N, P and K 
 

Land use SOC (%) N (kg/ha) P (kg/ha) K (kg/ha) 
Guava orchard  of ICAR-Horticulture farm 2.15a 420.85ab 20.83cd 422.80a 
Mandarin orchard  of ICAR-Horticulture farm 2.06a 366.14bcd 21.06cd 321.35c 
Ginger/turmeric of NBPGR 1 1.98ab 348.06d 15.71de 192.13d 
Buckwheat-pulses  of NBPGR 2 1.78c 460.35a 22.23c 330.86bc 
Ginger/turmeric  of ICAR-KVK  1.56d 404.50abc 35.67b 399.39ab 
Maize-vegetables  of ICAR-KVK  1.87bc 364.68bcd 52.07a 181.73d 
Pulse-vegetables  of ICAR-KVK  1.76c 377.46b 40.14b 354.00abc 
Medicinal plants (Perilla, Coix)  of NBPGR 2 1.81bc 402.21bc 13.33f 305.36c 
Maize-fallow of NBPGR 2 1.76c 409.92ab 16.58de 289.77c 
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considered for N in NBPGR 1. The median of P 
was found to be smaller than the mean value in 
all the transformations including none 
transformation. Box-cox transfprmation had 
higher CV skewness deviation from zero as 
compared to log transformation. Log 
transformation was considered for normal 
distribution for spatial variability analysis of P in 
NBPGR 1. Similarly, box-cox transformation was 
also considered for spatial variability analysis of 
K due to comparatively smaller median and 
slightly higher CV than other transformations. 
The skewness was nearer to zero (-0.33) in box-
cox transformation. The spatial variability 
analysis of SOC and N in NBPGR 2 was carried 
out using the box-cox transformation because of 
higher CV (41.09% and 15.57%, respectively), 
comparatively lower median values and 
skewness nearer to 0 (-0.61 and -0.91, 
respectively). However, log transformation was 
considered for P and K due to lower median 
value than the mean and skewness near to 0 

(0.15 and -0.05, respectively). The spatial 
variability analysis of SOC, N, P and K of ICAR-
KVK farm was carried out using box-cox, none, 
box-cox and log transformation, respectively. The 
box-cox transformation was considered for 
spatial variability of SOC analysis because of 
higher CV (24.24%) and skewness nearer to 
zero (-0.98). Again, spatial variability analysis of 
N was performed using none transformation, 
which has medium CV (19.78%) and 0.22 
skewness. Spatial variability analysis of P was 
performed with box-cox transformation with 
medium CV (33.02%) and skewness nearer to 
zero (0.01). The log transformation for K was 
considered because of normal distribution of data 
having CV (7.89%) and skewness (0.01). In case 
of ICAR-Horticulture farm, spatial variability 
analysis of SOC, N and K were performed by 
box-cox, however, P was analyzed by log 
transformation based on mean, median, CV and 
skewness.

  
Table 4. Descriptive statistics of various soil parameters for NBPGR 1 

 
Soil 
parameter 

Transfor-
mation 

Min. Max. Mean S.D CV Skewness Kurtosis Median 

SOC (%) None 1.32 2.74 2.02 0.30 14.74 0.07 3.19 2.01 
Log 0.28 1.01 0.69 0.15 21.85 - 0.41 3.39 0.70 
Box-Cox 0.32 1.74 1.02 0.30 29.23 0.07 3.19 1.01 

N (kg/ha) None 188.16 501.76 348.10 76.4 21.23 - 0.16 2.46 351.23 
Log 5.24 6.22 5.83 0.24 4.05 - 0.69 3.08 5.86 
Box-Cox 187.16 500.76 347.10 76.37 22.00 - 0.16 2.46 350.23 

P (kg/ha) None 10.50 23.90 15.09 4.74 31.44 0.74 1.90 13.95 
Log 2.35 3.17 2.71 0.28 10.47 0.55 1.82 2.64 
Box-Cox 9.50 22.90 14.09 4.74 33.67 0.74 1.90 12.95 

K (kg/ha) None 153.44 224.00 192.16 15.66 8.15 - 0.33 2.76 193.20 
Log 5.03 5.41 5.26 0.08 1.58 - 0.54 3.03 5.26 
Box-Cox 152.44 223.00 191.60 15.66 8.17 - 0.33 2.76 192.20 

 
Table 5. Descriptive statistics of various soil parameters for NBPGR 2 

 
Soil 
parameter 

Transfor- 
mation 

Min. Max. Mean S.D C.V Skewness Kurtosis Median 

SOC (%) None 0.90 2.63 1.83 0.34 18.61 - 0.61 3.50 1.90 
Log - 0.10 0.97 0.58 0.21 35.70 - 1.23 4.46 0.64 
Box-Cox - 0.10 1.63 0.83 0.34 41.09 - 0.61 3.50 0.90 

N (Kg/ha) None 188.16 489.57 404.36 62.80 15.53 - 0.91 3.50 414.20 
Log 5.24 6.19 5.99 0.17 2.91 - 1.07 6.21 6.03 
Box-Cox 187.16 488.57 403.36 62.80 15.57 - 0.91 3.50 413.13 

P (Kg/ha)   None 8.89 39.84 19.03 6.91 36.34 0.88 3.38 17.77 
Log 2.18 3.68 2.88 0.35 12.19 0.15 2.36 2.60 
Box-Cox 7.89 38.84 18.03 6.92 38.36 0.88 3.38 12.45 

K (Kg/ha) None 158.37 520.80 315.24 80.49 25.53 0.56 2.81 301.73 
Log 5.06 6.26 5.72 0.25 4.45 - 0.05 2.80 5.71 
Box-Cox 157.37 519.80 314.24 80.49 25.61 0.56 2.81 300.73 
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Fig. 3. Spatial variability of SOC, N, P and K in NBPGR 1 

 
 

 
Fig. 4. Spatial variability of SOC, N, P and K in NPBGR 2 
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Table 6. Descriptive statistics of various soil parameters for ICRA-KVK farm 
 
Soil 
parameter 

Transfor- 
mation 

Min. Max. Mean S.D C.V Skewness Kurtosis Median 

SOC (%) None 1.09 2.18 1.84 0.42 22.87 - 0.98 4.77 1.86 
Log 0.02 0.78 0.60 0.12 19.94 - 1.58 7.32 0.62 
Box-Cox 0.09 1.18 0.84 0.20 24.24 - 0.98 4.77 0.86 

N (Kg/ha) None 187.16 500.76 359.19 71.07 19.78 - 0.22 3.30 375.32 
Log 5.24 6.22 5.86 0.21 3.65 - 0.93 4.16 5.93 
Box-Cox 188.16 501.76 360.19 71.07 19.73 - 0.22 3.30 376.32 

P (Kg/ha)   None 6.11 78.85 45.73 14.76 32.28 0.01 2.83 43.94 
Log 1.81 4.37 3.76 0.41 10.83 - 2.00 10.57 3.78 
Box-Cox 5.11 77.85 44.73 14.76 33.02 0.01 2.83 42.94 

K (Kg/ha) None 106.40 504.00 265.85 112.69 42.39 0.43 1.84 229.60 
Log 4.67 6.22 5.49 0.43 7.89 0.01 1.69 5.44 
Box-Cox 105.40 503..00 264.85 112.69 42.55 0.43 1.84 228.60 

 
 

 
Fig. 5. Spatial variability of SOC, N, P and K in ICAR-KVK farm 

 
Table 7. Descriptive statistics of various soil parameters for ICAR-Horticulture farm 

 
Soil  
parameter 

Transfor- 
mation 

Min. Max. Mean S.D. C.V Skewness Kurtosis Median 

SOC (%) None 1.38 3.06 2.14 0.27 12.58 - 0.19 3.52 2.15 
Log 0.32 1.12 0.75 0.13 17.35 - 0.66 3.88 0.77 
Box-Cox 0.38 2.06 1.14 0.27 23.63 - 0.19 3.52 1.15 

N (Kg/ha) None 125.44 652.29 389.43 93.75 24.07 0.11 2.99 376.32 
Log 4.83 6.48 5.93 0.26 4.38 - 0.89 5.22 5.93 
Box-Cox 124.44 651.29 388.43 93.75 24.14 0.11 2.99 375.32 

P (Kg/ha) None 8.99 66.19 20.96 8.44 40.25 2.07 9.57 19.39 
Log 2.20 4.19 2.98 0.35 11.73 0.52 3.65 2.96 
Box-Cox 7.99 65.19 19.96 8.44 42.27 2.07 9.57 18.39 

K (Kg/ha) None 109.76 499.74 335.41 106.47 31.74 - 0.29 1.98 341.04 
Log 4.68 6.21 5.75 0.37 6.39 - 0.84 2.84 5.83 
Box-Cox 108.76 498.74 334.41 106.47 31.84 - 0.29 1.98 340.04 

 
Theoretically, nugget should be zero at lag 
distance zero. The nugget value of SOC, P and 

K was low, however it was around 4 for N at 
NBPGR 1. Lower nugget values indicated that  
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the sampling interval was proper to reflect the 
variance [29]. Negligible nugget effect indicated 
better spatial continuity at close distance 
between sample points. Higher nugget value 
indicated higher small scale spatial variability. 
The range expressed distance could be 
interpreted as a diameter of the zone of influence 
of SOC, N, P and K of two sampling points. At a 
distance less than the range, SOC, N, P and K of 
two sampling points were more alike. The higher 
range was for much larger sampling interval of 1-
2 km in a relatively larger area [30]. When the 
semivariance did not change significantly with 
increasing lag distance, the plateau reached, 
called sill which reflected the magnitude of 
random variation [27]. The nugget/sill ratio was a 
criterion for classifying the spatial dependency of 
soil properties. Nugget/sill ratio < 0.25 indicated 
strong spatial dependence of variance, ratio 
between 0.25-0.75 indicated moderate spatial 
dependence and ratio > 0.75 indicated weak 
spatial dependence [31]. Again, spatial 
dependency was considered as weak if the best-
fit semivariogram model had RMSE < 0.5 [28]. 
Most reliable surface was predicted with mean, 
RMSE and RMSS. The mean error should be 
closed to 0, RMSE should be as small as 
possible and RMSS should be close to 1. 
  
Soils of NBPGR 1 were found to have high SOC 
(1.6-2.7%), medium N (232.5-463.5 kg/ha), low P 
(<16.9 kg/ha) and medium K (153.4-206.6 kg/ha) 
(Fig. 3). Spatial dependency of SOC, N and K in 
NBPGR 1 was found to be moderate which could 
be due to application of small amount of FYM 
without mineral K fertilizers. Strong spatial 

dependency in case of P could be due to intrinsic 
factors (parent material etc.) and addition of 
small amount of P might not contribute to this. 
Zhang and McGrath [32] and Chai et al. [33] also 
reported the strong spatial dependency of soil 
properties with intrinsic factors and weak spatial 
dependency with extrinsic factors. The variations 
of SOC were correlated to land uses and higher 
amount of SOC was observed at sites nearer to 
the mandarin plantation and grassland of 
NBPGR 1. Again, higher amount of N, P and K 
content were found towards foot-slope and toe-
slope (south-west direction). 
 
The nugget effect on SOC, N, P and K in 
NBPGR 2 also followed similar trend as NBPGR 
1. Soils of NBPGR 2 were found to have  high  
SOC (1.55-1.99%), medium N (263-443 kg/ha), 
low P (11.7-26.7 kg/ha) and medium K (213-440 
kg/ha) (Fig. 4). The variability scale for N was 
narrow. The nugget/sill ratio for SOC & P had 
moderate spatial autocorrelation and N & K had 
weak spatial relationship. The RMSS of SOC, N, 
P & K were 0.97-1.03 which indicated that the 
predicted surfaces were reliable. SOC, N, P and 
K content was found to increase towards toe-
slope of the NBPGR 2. This might be due to 
accumulation of water soluble fractions of SOC, 
N, P and K in the toe-sole. This was also evident 
from higher moisture content in the toe-sole. The 
range of influence of SOC, N, P and K was 5m, 
9m, 17m and 16m, respectively. This indicated 
that the variability of SOC and N was less 
compared to the variability of P and K in NBPGR 
2. The pattern of SOC, N, P and K distribution in 
NBPGR 2 was similar to the NBPGR 1 in spite of 

 
 

 
Fig. 6. Spatial variability of SOC, N, P and K in ICAR-Horticulture farm 
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Table 8. Comparative evaluation of different geostatistical methods and models for NBPGR 1 
 

Soil 
parameter 

Geostatistical 
method 

Model Nugget 
(m) 

Sill 
(m) 

Nugget/
Sill 

Range 
(m) 

Mean RMSE RMSS 

SOC (%) IDW Optimization 
power-2 

    -0.02 0.32  

RBF      -0.01 0.33  
Kriging 
 

Circular 0.65 0.89 0.73 1 -0.01 0.33 1.05 
Spherical 0.58 0.89 0.65 1 -0.01 0.03 1.05 
Tetra spherical 0.52 0.89 0.58 1 -0.00 0.33 1.04 
Pentaspherical 0.47 0.89 0.53 1 -0.01 0.33 1.04 
Exponential 0.70 0.89 0.79 1 -0.01 0.33 1.04 
Gaussian 0.73 0.89 0.82 1 -0.01 0.33 1.05 

N (Kg/ha) IDW Optimization 
power-2 

    -0.13 74.07  

RBF      -0.65 74.81  
Kriging  
 

Circular 4.09 7.53 0.54 8 -0.39 70.56 1.00 
Spherical 4.00 7.24 0.55 8 -0.34 70.79 1.00 
Tetra spherical 3.94 7.04 0.56 8 -0.32 71.01 1.01 
Pentaspherical 3.88 6.90 0.56 8 -0.30 71.21 1.01 
Exponential 3.47 7.03 0.49 8 -0.33 72.15 1.02 
Gaussian 4.54 7.71 0.59 8 -0.37 69.35 0.98 

P (Kg/ha) IDW Optimization 
power-2 

    0.15 3.80  

RBF      0.05 3.89  
Kriging 
 

Circular 0.00 0.6 0.00 0.1 0.11 3.66 0.93 
Spherical 0.00 0.6 0.00 0.1 0.11 3.68 0.94 
Tetra spherical 0.00 0.6 0.00 0.1 0.09 3.65 0.93 
Pentaspherical 0.00 0.6 0.00 0.1 0.09 3.63 0.92 
Exponential 0.00 0.6 0.00 0.1 0.06 3.75 0.94 
Gaussian 0.00 0.6 0.00 0.1 0.10 3.70 0.94 

K (Kg/ha) IDW Optimization 
power-2 

    -0.33 15.39  

RBF      -0.26 15.49  
Kriging 
 

Circular 0.16 0.32 0.48 7 -0.19 14.98 1.06 
Spherical 0.15 0.31 0.49 8 -0.18 15.00 1.06 
Tetras pherical 0.15 0.30 0.49 8 -0.17 15.03 1.06 
Pentaspherical 0.15 0.30 0.50 8 -0.17 15.05 1.07 
Exponential 0.13 0.30 0.43 8 -0.21 15.19 1.07 
Gaussian 0.16 0.32 0.50 8 -0.16 14.85 1.05 

 
variation in slope. SOC content was more                        
in the toe-slope of medicinal plant growing             
areas of NBPGR 2. This could be due to 
accumulation of plant litters in the toe-slope by 
surface runoff. 
 
In ICAR-KVK farm, N had higher nugget value 
than SOC, P and K. The nugget/sill ratio showed 
weak spatial autocorrelation for all the soil 
variables. It might be attributed to regular uniform 
soil tillage and agronomic management 
practices. Though ICAR-KVK farm and NBPGR 2 
had same slope (9%), the range of SOC and N 
influence zone in ICAR-KVK farm was 2-2.5 and 

1-1.5 times higher than NBPGR 2, respectively. 
On the other hand, influence zone of P was 5-6 
times lower than the NBPGR 2. The range of 
available K influence zone was slightly less than 
NBPGR 2. It might be due to influence of uniform 
extrinsic factors (uniform tillage and crop 
management practices) on SOC, N and K and 
influence of intrinsic factor (strongly acidic 
reaction) on P. The RMSS of all the soil variables 
were nearer to 1 which indicated reliability of 
spatial map generated for ICAR-KVK farm. The 
localized effect of SOC with non uniform addition 
of FYM was observed. SOC, N, P and K content 
in the soil was found in the range of 1.09-2.18%, 
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228-400 kg/ha, 16.4-39.5 kg/ha and 106-504 
kg/ha respectively (Fig. 5).   
 
The nugget of the soil variables for ICAR-
Horticulture farm was very small and nugget/sill 
ratio of SOC and N indicated weak spatial 
dependency, however, P and K had moderate 
spatial dependence. Zone of influence for SOC 
and P was similar. The range for N was less 
which indicated higher spatial variation. On the 
other hand lower spatial variation was observed 
for K. The RMSS of the variables were nearer to 
1 indicating reliable surface variability prediction. 

Soils of the ICAR-Horticulture farm were found to 
be high in SOC (1.79-2.47%), medium in N (200-
444 kg/ha), low in P (8.9-28.29 kg/ha) and 
medium in K (110-392 kg/ha) (Fig. 6). The spatial 
variability map showed higher amount of SOC in 
the entire farm which might be due to 
decomposition of leaf litters. Again, P was found 
to be higher in the shoulder as well as toe-slope 
(guava orchard) lower in back slope and foot 
slope (mandarin orchard). This may be attributed 
to differences in crop and nutrient management 
in guava and mandarin. N and K also showed 
similar trend of spatial variability. 

 
Table 9. Comparative evaluation of different geostatistical methods and models for NBPGR 2 

 
Soil 
parameter 

Geostatistical 
method 

Model Nugget 
(m) 

Sill 
(m) 

Nugget/
Sill 

Major 
range 
(m) 

Mean RMSE RMSS 

SOC (%) IDW Optimization 
power-2 

    -0.01 0.32  

RBF      -0.00 0.32  
Kriging Circular 0.07 0.12 0.58 4.8 0.00 0.32 1.01 

Spherical 0.07 0.12 0.58 5.3 0.00 0.32 1.01 
Tetra spherical 0.07 0.12 0.57 6.0 0.00 0.32 1.01 
Pentaspherical 0.07 0.12 0.57 6.4 0.00 0.32 1.01 
Exponential 0.06 0.12 0.48 6.2 0.00 0.32 1.001 
Gaussian 0.08 0.12 0.65 5.0 0.00 0.33 1.01 

N (kg/ha) IDW Optimization 
power-2 

    1.66 68.08  

RBF      0.96 71.70  
Kriging Circular 3.69 4.02 0.92 8.1 0.86 64.51 1.02 

Spherical 3.69 4.02 0.92 9 0.90 64.53 1.01 
Tetra spherical 3.69 4.02 0.92 9.8 0.84 64.54 1.01 
Pentaspherical 3.69 4.02 0.92 11 0.83 64.55 1.01 
Exponential 3.71 4.04 0.92 13 0.84 64.52 1.01 
Gaussian 3.75 4.03 0.93 8.4 0.87 64.42 1.01 

P (kg/ha) IDW Optimization 
power-2 

    0.08 6.33  

RBF      0.03 6.49  
Kriging Circular 0.08 0.18 0.42 17 0.02 6.26 0.99 

Spherical 0.08 0.17 0.44 17 0.02 6.26 1.01 
Tetra spherical 0.07 0.16 0.46 17 0.03 6.26 1.02 
Pentaspherical 0.07 0.16 0.47 17 0.03 6.27 1.02 
Exponential 0.06 0.16 0.41 17 0.05 6.30 1.03 
Gaussian 0.09 0.19 0.48 17 -0.01 6.25 1.00 

K (kg/ha) IDW Optimization 
power-2 

    0.51 87.52  

RBF      0.51 87.52  
Kriging Circular 0.07 0.07 1.00 16 1.51 82.69 1.00 

Spherical 0.07 0.07 1.00 16 1.51 82.69 1.00 
Tetra spherical 0.07 0.07 1.00 16 1.51 82.69 1.00 
Pentaspherical 0.07 0.07 1.00 16 1.51 82.69 1.00 
Exponential 0.07 0.07 1.00 16 1.51 82.69 1.00 
Gaussian 0.07 0.07 1.00 16 1.51 82.69 1.00 
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Table 10. Comparative evaluation of different geostatistical methods and models for ICAR-KVK 
farm 

 
Soil 
parameter 

Geostatistical 
method 

Model Nugget 
(m) 

Sill 
(m) 

Nugget/
Sill 

Range 
(m) 

Mean RMSE RMSS 

SOC (%) IDW Optimization 
power-2 

    0.01 0.02  

RBF      0.01 0.15  
Kriging Circular 0.39 0.44 0.89 14 0.01 0.21 1.01 

Spherical 0.39 0.42 0.90 14 0.01 0.21 1.01 
Tetra spherical 0.39 0.43 0.91 14 0.01 0.21 1.01 
Pentaspherical 0.39 0.42 0.92 14 0.01 0.21 1.01 
Exponential 0.39 0.42 0.92 14 0.01 0.21 1.01 
Gaussian 0.39 0.44 0.88 14 0.01 0.21 1.02 

N (kg/ha) IDW Optimization 
power-2 

    -0.51 74.43  

RBF      -0.32 76.71  
Kriging Circular 4.66 5.54 0.84 14 -0.00 71.43 1.00 

Spherical 4.66 5.44 0.86 14 -0.01 71.45 1.00 
Tetra spherical 4.66 5.37 0.87 14 -0.01 71.46 1.00 
Pentaspherical 4.67 5.33 0.88 14 -0.01 71.47 1.00 
Exponential 4.63 5.33 0.87 14 -0.01 71.59 1.00 
Gaussian 4.75 5.62 0.85 14 -0.01 71.22 1.00 

P (kg/ha) IDW Optimization 
power-2 

    -0.31 16.3  

RBF      0.04 16.63  
Kriging Circular 2.07 2.19 0.95 3 -0.32 14.89 0.98 

Spherical 2.07 2.19 0.95 3 -0.28 14.95 0.99 
Tetra spherical 2.08 2.19 0.95 3 -0.27 14.91 0.98 
Pentaspherical 2.08 2.19 0.95 4.7 -0.28 14.95 0.99 
Exponential 2.08 2.18 0.95 2 -0.36 15.38 0.99 
Gaussian 2.11 2.18 0.97 3 -0.32 14.77 0.97 

K (kg/ha) IDW Optimization 
power-2 

    -1.40 102.6  

RBF      0.10 102.3  
Kriging Circular 0.17 0.22 0.77 14 2.30 110.2 0.88 

Spherical 0.17 0.22 0.77 14 2.27 110.1 0.89 
Tetra spherical 0.17 0.21 0.81 14 2.24 110 0.89 
Pentaspherical 0.17 0.21 0.81 14 2.23 109.9 0.89 
Exponential 0.16 0.21 0.76 14 1.98 109.2 0.89 
Gaussian 0.17 0.22 0.78 14 2.74 111.1 0.88 

 
Table 11. Comparative evaluation of different geostatistical methods and models for ICAR 

Horticulture farm 
 

Soil 
parameter 

Geostatistical 
Method 

Model Nugget 
(m) 

Sill 
(m) 

Nugget/
Sill 

Major 
(m) 

Mean RMSE RMSS 

SOC (%) IDW Optimization 
power-2 

    -0.00 0.26  

RBF      -0.00 0.27  
Kriging Circular 0.07 0.07 0.91 9 0.00 0.26 0.97 

Spherical 0.07 0.07 0.91 9 0.00 0.26 0.97 
Tetra spherical 0.07 0.07 0.91 10 0.00 0.26 0.97 
Pentaspherical 0.07 0.07 0.91 10 0.00 0.26 0.97 
Exponential 0.07 0.07 0.89 10 0.00 0.26 0.97 
Gaussian 0.07 0.07 0.93 8 0.00 0.26 0.97 
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Soil 
parameter 

Geostatistical 
Method 

Model Nugget 
(m) 

Sill 
(m) 

Nugget/
Sill 

Major 
(m) 

Mean RMSE RMSS 

N (kg/ha) IDW Optimization 
power-2 

    1.68 92.82  

RBF      0.59 93.30  
Kriging Circular 0.08 0.88 0.92 4 0.88 91.90 0.97 

Spherical 0.80 0.88 0.90 4 0.86 91.82 0.97 
Tetra spherical 0.78 0.88 0.89 4 0.84 91.76 0.97 
Pentaspherical 0.77 0.87 0.88 4 0.82 91.72 0.97 
Exponential 0.80 0.88 0.90 4 0.90 91.95 0.97 
Gaussian 0.83 0.88 0.94 4 0.88 91.90 0.97 

P (kg/ha) IDW Optimization 
power-2 

    -0.00 7.69  

RBF      0.02 7.63  
Kriging Circular 0.09 0.13 0.71 7 0.05 7.65 1.04 

Spherical 0.09 0.13 0.70 8 0.05 7.65 1.04 
Tetra spherical 0.09 0.13 0.70 9 0.05 7.65 1.04 
Pentaspherical 0.09 0.13 0.70 10 0.05 7.64 1.04 
Exponential 0.08 0.13 0.61 8 0.03 7.60 1.04 
Gaussian 0.10 0.13 0.75 7 0.06 7.68 1.05 

K (kg/ha) IDW Optimization 
power-2 

    -2.14 100.00  

RBF      -0.83 100.20  
Kriging Circular 0.78 13.12 0.61 13 0.43 99.29 1.04 

Spherical 0.79 13.14 0.60 15 0.43 99.27 1.05 
Tetra spherical 0.79 13.15 0.60 16 0.42 99.25 1.05 
Pentaspherical 0.79 13.16 0.60 18 0.42 99.25 1.05 
Exponential 0.76 13.95 0.54 23 0.32 99.13 1.05 
Gaussian 0.87 13.42 0.65 14 0.61 99.69 1.03 

 

4. CONCLUSION 
 
This study has shown that soils of all the four 
sites were high in SOC, low to medium in N and 
K and low in P. The status of N, P and K 
suggested need for fertilizers use on the basis of 
soil test values. Geo-statistical methods and 
models were found to be useful in generating 
spatial variability maps which could be used for 
site specific nutrient management. Land use had 
a greater role in influencing nutrient status of soil 
and this was evident from higher nutrient content 
in ICAR-Horticulture farm compared to NBPGR 1 
in spite of having same slope (25%). However 
gentle slope (9%) was found to have lower SOC 
content and higher N, P and K compared to 
moderately steep slope (25%). Plantation crops 
(guava, mandarin) and long duration crops 
(ginger/turmeric) increased the SOC during 35 
years of prolonged cultivation. On the other 
hand, intensive cropping with short duration 
crops (maize-vegetable, pulse-vegetable 
sequence) depleted SOC during 35 years of 
cultivation. However, mineral nutrients (N, P and 
K) were found to be medium to high in the 
intensive cropping sites. The nugget/sill ratio 
demonstrated strong to moderate spatial auto-

correlation for P and moderate to weak spatial 
auto correlation for SOC, N and K in moderately 
steep slopes (25%). Again, RBF was found to be 
best interpolation technique for SOC and K 
whereas ordinary kriging gaussian model was 
suitable for N and P in gentle slopes (9%). The 
best described semivariograms for SOC, N, P, 
and K in moderately steep slopes (25%) were 
exponential, pentaspherical, exponential and 
exponential model, respectively. This study has 
demonstrated that geo-statistical methods on a 
large scale could be used for evaluation of 
spatial variability of soil properties in diverse 
topography and land uses in acidic soils of north-
eastern India. The soil chemical properties used 
to have spatial dependence and understanding 
such interaction could provide new insights into 
soil behavior for the better land management. 
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